Suppr超能文献

适应度函数的对数线性模型的方向和二次选择梯度的分析结果。

Analytical results for directional and quadratic selection gradients for log-linear models of fitness functions.

机构信息

School of Biology, University of St Andrews, St Andrews, Fife, KY16 9TH, UK.

School of Mathematics and Statistics, University of St Andrews, St Andrews, Fife, KY16 9SS, UK.

出版信息

Evolution. 2022 Jul;76(7):1378-1390. doi: 10.1111/evo.14486. Epub 2022 May 18.

Abstract

Log-linear models are widely used for assessing determinants of fitness in empirical studies, for example, in determining how reproductive output depends on trait values or environmental conditions. Similarly, theoretical works of fitness and natural selection employ log-linear models, often with a negative quadratic term, generating Gaussian fitness functions. However, in the specific application of regression-based analysis of natural selection, such models are rarely employed. Rather, OLS regression is the predominant means of assessing the form of natural selection. OLS regressions allow specific evolutionary quantitative parameters, selection gradients, to be estimated, and benefit from the fact that the associated statistical models are easily applied. We examine whether selection gradients can be directly expressed in terms of the coefficients of models using exponential fitness functions with linear or quadratic arguments. Such models can be easily fitted with generalized linear models (GLMs). The expressions we obtain coincide with those for Gaussian functions, but relax the major constraint that the (log) fitness function is concave (downwardly curved). Additionally these results lead to univariate and multivariate analyses of both linear and quadratic selection that potentially incorporate pragmatic and interpretable models of fitness functions, where the parameters can be related analytically to selection gradients, and that can be operationalized using widely available statistical tools.

摘要

对数线性模型被广泛应用于评估适应性的决定因素的实证研究,例如,在确定生殖产出如何取决于性状值或环境条件。同样,适应性和自然选择的理论著作也采用对数线性模型,通常带有负二次项,产生高斯适应度函数。然而,在基于回归的自然选择分析的具体应用中,这种模型很少被采用。相反,OLS 回归是评估自然选择形式的主要手段。OLS 回归允许估计特定的进化定量参数,选择梯度,并受益于相关统计模型易于应用的事实。我们检查了选择梯度是否可以直接用具有线性或二次参数的指数适应度函数的系数来表示。这些模型可以使用广义线性模型(GLM)轻松拟合。我们得到的表达式与高斯函数的表达式一致,但放宽了适应度函数(对数)是凹(向下弯曲)的主要约束。此外,这些结果还导致了线性和二次选择的单变量和多变量分析,这些分析可能包含实用且可解释的适应度函数模型,其中参数可以与选择梯度进行分析,并可以使用广泛可用的统计工具来实现。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/1233/9546161/cc524000e5b4/EVO-76-1378-g002.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验