Department of Ophthalmology, Xinhua Hospital, Affiliated to Shanghai Jiaotong University School of Medicine, Shanghai, China.
Ningbo Institute of Industrial Technology, Chinese Academy of Sciences, Ningbo, China.
Asia Pac J Ophthalmol (Phila). 2022 May 1;11(3):219-226. doi: 10.1097/APO.0000000000000498.
To develop and test semi-supervised generative adversarial networks (GANs) that detect retinal disorders on optical coherence tomography (OCT) images using a small-labeled dataset.
From a public database, we randomly chose a small supervised dataset with 400 OCT images (100 choroidal neovascularization, 100 diabetic macular edema, 100 drusen, and 100 normal) and assigned all other OCT images to unsupervised dataset (107,912 images without labeling). We adopted a semi-supervised GAN and a supervised deep learning (DL) model for automatically detecting retinal disorders from OCT images. The performance of the 2 models was compared in 3 testing datasets with different OCT devices. The evaluation metrics included accuracy, sensitivity, specificity, and the area under the receiver operating characteristic curves.
The local validation dataset included 1000 images with 250 from each category. The independent clinical dataset included 366 OCT images using Cirrus OCT Shanghai Shibei Hospital and 511 OCT images using RTVue OCT from Xinhua Hospital respectively. The semi-supervised GANs classifier achieved better accuracy than supervised DL model (0.91 vs 0.86 for local cell validation dataset, 0.91 vs 0.86 in the Shanghai Shibei Hospital testing dataset, and 0.93 vs 0.92 in Xinhua Hospital testing dataset). For detecting urgent referrals (choroidal neo-vascularization and diabetic macular edema) from nonurgent referrals (drusen and normal) on OCT images, the semi-supervised GANs classifier also achieved better area under the receiver operating characteristic curves than supervised DL model (0.99 vs 0.97, 0.97 vs 0.96, and 0.99 vs 0.99, respectively).
A semi-supervised GAN can achieve better performance than that of a supervised DL model when the labeled dataset is limited. The current study offers utility to various research and clinical studies using DL with relatively small datasets. Semi-supervised GANs can detect retinal disorders from OCT images using relatively small dataset.
利用小标记数据集开发和测试基于光学相干断层扫描 (OCT) 图像的视网膜疾病的半监督生成对抗网络 (GAN)。
我们从一个公共数据库中随机选择一个包含 400 张 OCT 图像的小监督数据集(100 例脉络膜新生血管、100 例糖尿病性黄斑水肿、100 例玻璃膜疣和 100 例正常),并将所有其他 OCT 图像分配到无标记的非监督数据集中(107912 张无标记图像)。我们采用半监督 GAN 和监督深度学习 (DL) 模型,从 OCT 图像中自动检测视网膜疾病。在 3 个具有不同 OCT 设备的测试数据集中比较了 2 种模型的性能。评估指标包括准确性、敏感性、特异性和受试者工作特征曲线下的面积。
局部验证数据集包括 1000 张图像,每类 250 张。独立临床数据集包括分别使用 Cirrus OCT Shanghai Shibei Hospital 的 366 张 OCT 图像和使用 RTVue OCT 来自新华医院的 511 张 OCT 图像。半监督 GANs 分类器的准确性优于监督 DL 模型(本地细胞验证数据集为 0.91 对 0.86,上海世北医院测试数据集为 0.91 对 0.86,新华医院测试数据集为 0.93 对 0.92)。对于从 OCT 图像中检测紧急转诊(脉络膜新生血管和糖尿病性黄斑水肿)和非紧急转诊(玻璃膜疣和正常),半监督 GANs 分类器在受试者工作特征曲线下的面积也优于监督 DL 模型(0.99 对 0.97、0.97 对 0.96 和 0.99 对 0.99)。
当标记数据集有限时,半监督 GAN 可以比监督 DL 模型实现更好的性能。本研究为使用相对较小数据集的各种研究和临床研究提供了 DL 的应用价值。半监督 GAN 可以使用相对较小的数据集从 OCT 图像中检测视网膜疾病。