Kham Eye Centre, Kandze Prefecture People's Hospital, Kangding, China.
Joint Shantou International Eye Center of Shantou University and the Chinese University of Hong Kong, Shantou University Medical College, Shantou, Guangdong, China.
Transl Vis Sci Technol. 2024 Sep 3;13(9):22. doi: 10.1167/tvst.13.9.22.
To propose and validate a meta-learning approach for detecting retinal vein occlusion (RVO) from multimodal images with only a few samples.
In this cross-sectional study, we formulate the problem as meta-learning. The meta-training dataset consists of 1254 color fundus (CF) images from 39 different fundus diseases. Two meta-testing datasets include a public domain dataset and an independent dataset from Kandze Prefecture People's Hospital. The proposed meta-learning models comprise two modules: the feature extraction networks and the prototypical networks (PNs). We use two deep learning models (the ResNet and the Contrastive Language-Image Pre-Training networks [CLIP]) for feature extraction. We evaluate the performance of the algorithms using accuracy, area under the receiver operating characteristic curve (AUCROC), F1-score, and recall.
CLIP-based PNs outperform across all meta-testing datasets. For the public APTOS dataset, meta-learning algorithms achieve good results with an accuracy of 86.06% and an AUCROC of 0.87 with only 16 training images. In the hospital datasets, meta-learning algorithms show excellent diagnostic capability for detecting RVO with a very low number of shots (AUCROC above 0.99 for n = 4, 8, and 16, respectively). Notably, even though the meta-training dataset does not include fluorescein angiography (FA) images, meta-learning algorithms also have excellent diagnostic capability for detecting RVO from images with a different modality (AUCROC above 0.93 for n = 4, 8, and 16, respectively).
The proposed meta-learning models excel in detecting RVO, not only on CF images but also on FA images from a different imaging modality.
The proposed meta-learning models could be useful in automatically detecting RVO on CF and FA images.
提出并验证一种元学习方法,用于仅使用少量样本从多模态图像中检测视网膜静脉阻塞(RVO)。
在这项横断面研究中,我们将该问题表述为元学习。元训练数据集包含来自 39 种不同眼底疾病的 1254 张彩色眼底(CF)图像。两个元测试数据集包括一个公共领域数据集和来自坎泽州人民医院的一个独立数据集。所提出的元学习模型包括两个模块:特征提取网络和原型网络(PN)。我们使用两种深度学习模型(ResNet 和对比语言-图像预训练网络[CLIP])进行特征提取。我们使用准确性、接收者操作特征曲线(AUCROC)下面积、F1 分数和召回率来评估算法的性能。
基于 CLIP 的 PN 在所有元测试数据集上均表现出色。对于公共 APTOS 数据集,元学习算法在仅使用 16 张训练图像的情况下,取得了 86.06%的准确性和 0.87 的 AUCROC 的良好结果。在医院数据集,元学习算法在使用极少量拍摄(分别为 n=4、8 和 16 时 AUCROC 均大于 0.99)的情况下,表现出出色的 RVO 检测诊断能力。值得注意的是,即使元训练数据集不包含荧光素血管造影(FA)图像,元学习算法对来自不同模态的图像的 RVO 检测也具有出色的诊断能力(分别为 n=4、8 和 16 时 AUCROC 均大于 0.93)。
所提出的元学习模型在检测 RVO 方面表现出色,不仅在 CF 图像上,而且在来自不同成像方式的 FA 图像上也表现出色。
钱林艳