文献检索文档翻译深度研究
Suppr Zotero 插件Zotero 插件
邀请有礼套餐&价格历史记录

新学期,新优惠

限时优惠:9月1日-9月22日

30天高级会员仅需29元

1天体验卡首发特惠仅需5.99元

了解详情
不再提醒
插件&应用
Suppr Zotero 插件Zotero 插件浏览器插件Mac 客户端Windows 客户端微信小程序
高级版
套餐订阅购买积分包
AI 工具
文献检索文档翻译深度研究
关于我们
关于 Suppr公司介绍联系我们用户协议隐私条款
关注我们

Suppr 超能文献

核心技术专利:CN118964589B侵权必究
粤ICP备2023148730 号-1Suppr @ 2025

通过电荷分离工程优化的 POD 纳米酶用于光/pH 激活细菌催化/光动力治疗。

POD Nanozyme optimized by charge separation engineering for light/pH activated bacteria catalytic/photodynamic therapy.

机构信息

Key Laboratory of Flexible Electronics (KLOFE) and Institute of Advanced Materials (IAM), School of Physical and Mathematical Sciences, Nanjing Tech University (NanjingTech), Nanjing, 211816, China.

School of Physics, Southeast University, Nanjing, 211189, China.

出版信息

Signal Transduct Target Ther. 2022 Mar 28;7(1):86. doi: 10.1038/s41392-022-00900-8.


DOI:10.1038/s41392-022-00900-8
PMID:35342192
原文链接:https://pmc.ncbi.nlm.nih.gov/articles/PMC8958166/
Abstract

The current feasibility of nanocatalysts in clinical anti-infection therapy, especially for drug-resistant bacteria infection is extremely restrained because of the insufficient reactive oxygen generation. Herein, a novel Ag/BiMoO (Ag/BMO) nanozyme optimized by charge separation engineering with photoactivated sustainable peroxidase-mimicking activities and NIR-II photodynamic performance was synthesized by solvothermal reaction and photoreduction. The Ag/BMO nanozyme held satisfactory bactericidal performance against methicillin-resistant Staphylococcus aureus (MRSA) (~99.9%). The excellent antibacterial performance of Ag/BMO NPs was ascribed to the corporation of peroxidase-like activity, NIR-II photodynamic behavior, and acidity-enhanced release of Ag. As revealed by theoretical calculations, the introduction of Ag to BMO made it easier to separate photo-triggered electron-hole pairs for ROS production. And the conduction and valence band potentials of Ag/BMO NPs were favorable for the reduction of O to ·O. Under 1064 nm laser irradiation, the electron transfer to BMO was beneficial to the reversible change of Mo/Mo, further improving the peroxidase-like catalytic activity and NIR-II photodynamic performance based on the Russell mechanism. In vivo, the Ag/BMO NPs exhibited promising therapeutic effects towards MRSA-infected wounds. This study enriches the nanozyme research and proves that nanozymes can be rationally optimized by charge separation engineering strategy.

摘要

目前,纳米催化剂在临床抗感染治疗中的应用,特别是针对耐药菌感染的应用,受到反应性氧生成不足的极大限制。在此,通过溶剂热反应和光还原法合成了一种新型的通过电荷分离工程优化的 Ag/BiMoO(Ag/BMO)纳米酶,具有光激活的持续过氧化物酶模拟活性和近红外二区光动力性能。Ag/BMO 纳米酶对耐甲氧西林金黄色葡萄球菌(MRSA)具有令人满意的杀菌性能(~99.9%)。Ag/BMO NPs 的优异抗菌性能归因于过氧化物酶样活性、近红外二区光动力行为和增强的 Ag 释放的协同作用。理论计算表明,Ag 的引入使得光诱导电子-空穴对产生 ROS 的分离变得更容易。并且 Ag/BMO NPs 的导带和价带电位有利于 O 到·O 的还原。在 1064nm 激光照射下,电子转移到 BMO 有利于 Mo/Mo 的可逆变化,进一步提高了基于 Russell 机制的过氧化物酶模拟催化活性和近红外二区光动力性能。在体内,Ag/BMO NPs 对 MRSA 感染伤口表现出良好的治疗效果。本研究丰富了纳米酶的研究,并证明纳米酶可以通过电荷分离工程策略进行合理优化。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/6497/8958166/b6109098f03d/41392_2022_900_Fig4_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/6497/8958166/71aa9484666c/41392_2022_900_Sch1_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/6497/8958166/c8646bd3359f/41392_2022_900_Fig1_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/6497/8958166/47fd8f7d28b2/41392_2022_900_Fig2_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/6497/8958166/84e14ded9229/41392_2022_900_Fig3_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/6497/8958166/b6109098f03d/41392_2022_900_Fig4_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/6497/8958166/71aa9484666c/41392_2022_900_Sch1_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/6497/8958166/c8646bd3359f/41392_2022_900_Fig1_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/6497/8958166/47fd8f7d28b2/41392_2022_900_Fig2_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/6497/8958166/84e14ded9229/41392_2022_900_Fig3_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/6497/8958166/b6109098f03d/41392_2022_900_Fig4_HTML.jpg

相似文献

[1]
POD Nanozyme optimized by charge separation engineering for light/pH activated bacteria catalytic/photodynamic therapy.

Signal Transduct Target Ther. 2022-3-28

[2]
Nanoarchitectonics of Bimetallic Cu-/Co-Doped Nitrogen-Carbon Nanozyme-Functionalized Hydrogel with NIR-Responsive Phototherapy for Synergistic Mitigation of Drug-Resistant Bacterial Infections.

ACS Appl Mater Interfaces. 2024-4-3

[3]
Cu MoS Nanozyme with NIR-II Light Enhanced Catalytic Activity for Efficient Eradication of Multidrug-Resistant Bacteria.

Small. 2020-10

[4]
Oxygen-Rich Graphene/ZnO-Ag nanoframeworks with pH-Switchable Catalase/Peroxidase activity as O Nanobubble-Self generator for bacterial inactivation.

J Colloid Interface Sci. 2023-5

[5]
Bimetallic CuCo S Nanozymes with Enhanced Peroxidase Activity at Neutral pH for Combating Burn Infections.

Chembiochem. 2020-9-14

[6]
NIR-activated multi-hit therapeutic AgS quantum dot-based hydrogel for healing of bacteria-infected wounds.

Acta Biomater. 2022-6

[7]
Liquid exfoliation of VC nanodots as peroxidase-like nanozymes for photothermal-catalytic synergistic antibacterial treatment.

Acta Biomater. 2022-9-1

[8]
Charge-Switchable CuO Nanozyme with Peroxidase and Near-Infrared Light Enhanced Photothermal Activity for Wound Antibacterial Application.

ACS Appl Mater Interfaces. 2022-6-8

[9]
Food-borne melanoidin-based nanozyme mimics natural peroxidase for efficient catalytic disinfection.

Colloids Surf B Biointerfaces. 2022-12

[10]
NIR-responsive MoS-CuWS nanosheets for catalytic/photothermal therapy of methicillin-resistant infections.

Nanoscale. 2022-7-14

引用本文的文献

[1]
Stimuli-responsive nanozymes for wound healing: From design strategies to therapeutic advances.

Mater Today Bio. 2025-7-2

[2]
Nanozymes for Accelerating the Foot Wound Healing: A Review.

Int J Nanomedicine. 2025-7-10

[3]
Group IB Metal-Based Nanomaterials for Antibacterial Applications.

Small Sci. 2025-3-9

[4]
New Strategies for the Treatment of Diabetic Foot Ulcers Using Nanoenzymes: Frontline Advances in Anti-Infection, Immune Regulation, and Microenvironment Improvement.

Int J Nanomedicine. 2025-7-5

[5]
Recent advances in NIR-II photothermal and photodynamic therapies for drug-resistant wound infections.

Mater Today Bio. 2025-5-14

[6]
Multi-enzymatic biomimetic cerium-based MOFs mediated precision chemodynamic synergistic antibacteria and tissue repair for MRSA-infected wounds.

J Nanobiotechnology. 2025-5-20

[7]
Review of light activated antibacterial nanomaterials in the second biological window.

J Nanobiotechnology. 2025-4-15

[8]
Mucous Permeable Nanoparticle for Inducing Cuproptosis-Like Death In Broad-Spectrum Bacteria for Nebulized Treatment of Acute Pneumonia.

Adv Sci (Weinh). 2025-4

[9]
Progress in antibacterial applications of nanozymes.

Front Chem. 2024-9-23

[10]
Nanoenzymes: A Radiant Hope for the Early Diagnosis and Effective Treatment of Breast and Ovarian Cancers.

Int J Nanomedicine. 2024

本文引用的文献

[1]
Tetrahedral DNA nanostructures for effective treatment of cancer: advances and prospects.

J Nanobiotechnology. 2021-12-7

[2]
Infection microenvironment-activated nanoparticles for NIR-II photoacoustic imaging-guided photothermal/chemodynamic synergistic anti-infective therapy.

Biomaterials. 2021-8

[3]
Synergistic and On-Demand Release of Ag-AMPs Loaded on Porous Silicon Nanocarriers for Antibacteria and Wound Healing.

ACS Appl Mater Interfaces. 2021-4-14

[4]
A versatile chitosan nanogel capable of generating AgNPs in-situ and long-acting slow-release of Ag for highly efficient antibacterial.

Carbohydr Polym. 2021-4-1

[5]
Biomedicine Meets Fenton Chemistry.

Chem Rev. 2021-2-24

[6]
New BiMoO nano-shapes toward ultrasensitive enzymeless glucose tracing: Synergetic effect of the Bi-Mo association.

Talanta. 2021-1-1

[7]
The Influence of Photoactive Heterostructures on the Photocatalytic Removal of Dyes and Pharmaceutical Active Compounds: A Mini-Review.

Nanomaterials (Basel). 2020-9-7

[8]
Global trends in antimicrobial resistance in animals in low- and middle-income countries.

Science. 2019-9-20

[9]
Superimposed surface plasma resonance effect enhanced the near-infrared photocatalytic activity of Au@BiWO coating for rapid bacterial killing.

J Hazard Mater. 2019-7-4

[10]
Nanozyme: new horizons for responsive biomedical applications.

Chem Soc Rev. 2019-7-15

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

推荐工具

医学文档翻译智能文献检索