Suppr超能文献

基于对比自监督纹理学习的宫颈光学相干断层成像图像分类。

Cervical optical coherence tomography image classification based on contrastive self-supervised texture learning.

机构信息

School of Computer Science, Wuhan University, Wuhan, People's Republic of China.

出版信息

Med Phys. 2022 Jun;49(6):3638-3653. doi: 10.1002/mp.15630. Epub 2022 Apr 13.

Abstract

BACKGROUND

Cervical cancer (CC) seriously affects the health of the female reproductive system. Optical coherence tomography (OCT) emerged as a noninvasive, high-resolution imaging technology for cervical disease detection. However, OCT image annotation is knowledge-intensive and time-consuming, which impedes the training process of deep-learning-based classification models.

PURPOSE

This study aims to develop a computer-aided diagnosis (CADx) approach to classifying in-vivo cervical OCT images based on self-supervised learning.

METHODS

In addition to high-level semantic features extracted by a convolutional neural network (CNN), the proposed CADx approach designs a contrastive texture learning strategy to leverage unlabeled cervical OCT images' texture features. We conducted 10-fold cross-validation on the OCT image dataset from a multicenter clinical study on 733 patients from China.

RESULTS

In a binary classification task for detecting high-risk diseases, including high-grade squamous intraepithelial lesion and CC, our method achieved an area-under-the-curve value of 0.9798 ± 0.0157 with a sensitivity of 91.17% ± 4.99% and a specificity of 93.96% ± 4.72% for OCT image patches; also, it outperformed two out of four medical experts on the test set. Furthermore, our method achieved 91.53% sensitivity and 97.37% specificity on an external validation dataset containing 287 three-dimensional OCT volumes from 118 Chinese patients in a new hospital using a cross-shaped threshold voting strategy.

CONCLUSIONS

The proposed contrastive-learning-based CADx method outperformed the end-to-end CNN models and provided better interpretability based on texture features, which holds great potential to be used in the clinical protocol of "see-and-treat."

摘要

背景

宫颈癌(CC)严重影响女性生殖系统健康。光学相干断层扫描(OCT)作为一种非侵入性、高分辨率的宫颈疾病检测成像技术而出现。然而,OCT 图像注释是一项知识密集型且耗时的工作,这阻碍了基于深度学习的分类模型的训练过程。

目的

本研究旨在开发一种基于自我监督学习的计算机辅助诊断(CADx)方法,对体内宫颈 OCT 图像进行分类。

方法

除了卷积神经网络(CNN)提取的高级语义特征外,所提出的 CADx 方法还设计了一种对比纹理学习策略,以利用未标记的宫颈 OCT 图像的纹理特征。我们在中国的多中心临床研究中对来自 733 名患者的 OCT 图像数据集进行了 10 折交叉验证。

结果

在用于检测高危疾病(包括高级别鳞状上皮内病变和 CC)的二元分类任务中,我们的方法在 OCT 图像斑块中实现了 0.9798±0.0157 的曲线下面积(AUC)值,其敏感性为 91.17%±4.99%,特异性为 93.96%±4.72%;并且,在测试集上,它优于四位医学专家中的两位。此外,我们的方法在使用十字形阈值投票策略的新医院的 118 名中国患者的 287 个三维 OCT 体积的外部验证数据集上实现了 91.53%的敏感性和 97.37%的特异性。

结论

所提出的基于对比学习的 CADx 方法优于端到端 CNN 模型,并基于纹理特征提供了更好的可解释性,这使其在“见治”的临床方案中具有很大的应用潜力。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验