Suppr超能文献

计算机提取的图像特征在癌前宫颈光学相干断层扫描中的诊断效能。

Diagnostic efficacy of computer extracted image features in optical coherence tomography of the precancerous cervix.

机构信息

Department of Biomedical Engineering, Case Western Reserve University, 319 Wickenden Building, 10900 Euclid Avenue, Cleveland, Ohio 44106, USA.

出版信息

Med Phys. 2011 Jan;38(1):107-13. doi: 10.1118/1.3523098.

Abstract

PURPOSE

To determine the diagnostic efficacy of optical coherence tomography (OCT) to identify cervical intraepithelial neoplasia (CIN) grade 2 or higher by computer-aided diagnosis (CADx).

METHODS

OCT has been investigated as a screening/diagnostic tool in the management of preinvasive and early invasive cancers of the uterine cervix. In this study, an automated algorithm was developed to extract OCT image features and identify CIN 2 or higher. First, the cervical epithelium was detected by a combined watershed and active contour method. Second, four features were calculated: The thickness of the epithelium and its standard deviation and the contrast between the epithelium and the stroma and its standard deviation. Finally, linear discriminant analysis was applied to classify images into two categories: Normal/inflammation/CIN 1 and CIN 2/CIN 3. The algorithm was applied to 152 images (74 patients) obtained from an international study.

RESULTS

The numbers of normal/inflammatory/CIN 1/CIN 2/CIN 3 images are 74, 29, 14, 24, and 11, respectively. Tenfold cross-validation predicted the algorithm achieved a sensitivity of 51% (95% CI: 36%-67%) and a specificity of 92% (95% CI: 86%-96%) with an empirical two-category prior probability estimated from the data set. Receiver operating characteristic analysis yielded an area under the curve of 0.86.

CONCLUSIONS

The diagnostic efficacy of CADx in OCT imaging to differentiate high-grade CIN from normal/low grade CIN is demonstrated. The high specificity of OCT with CADx suggests further investigation as an effective secondary screening tool when combined with a highly sensitive primary screening tool.

摘要

目的

通过计算机辅助诊断(CADx)确定光学相干断层扫描(OCT)识别宫颈上皮内瘤变(CIN)2 级及以上的诊断效能。

方法

OCT 已被研究作为一种筛查/诊断工具,用于管理宫颈的早期癌前病变和早期浸润性病变。在本研究中,开发了一种自动算法来提取 OCT 图像特征并识别 CIN 2 级及以上病变。首先,采用分水岭和主动轮廓相结合的方法检测宫颈上皮。其次,计算了四个特征:上皮厚度及其标准差,上皮与基质之间的对比度及其标准差。最后,应用线性判别分析将图像分为两类:正常/炎症/CIN1 和 CIN2/CIN3。该算法应用于 152 张图像(74 例患者),这些图像来自一项国际研究。

结果

正常/炎症/CIN1/CIN2/CIN3 图像的数量分别为 74、29、14、24 和 11。十折交叉验证预测该算法的敏感性为 51%(95%CI:36%-67%),特异性为 92%(95%CI:86%-96%),其经验两分类先验概率是从数据集估计的。受试者工作特征曲线分析得出曲线下面积为 0.86。

结论

CADx 在 OCT 成像中区分高级别 CIN 与正常/低级别 CIN 的诊断效能得到了验证。OCT 结合 CADx 的高特异性表明,当与高敏感性的初级筛查工具结合使用时,可进一步将其作为一种有效的二级筛查工具进行研究。

相似文献

6
Fractal analysis of cervical intraepithelial neoplasia.宫颈上皮内瘤变的分形分析
PLoS One. 2014 Oct 10;9(10):e108457. doi: 10.1371/journal.pone.0108457. eCollection 2014.

引用本文的文献

本文引用的文献

2

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验