Suppr超能文献

基于质谱余数分析的二维液相色谱自动化特征挖掘在聚合物中的应用。

Automated Feature Mining for Two-Dimensional Liquid Chromatography Applied to Polymers Enabled by Mass Remainder Analysis.

机构信息

Van 't Hoff Institute for Molecular Sciences (HIMS), Analytical Chemistry Group, University of Amsterdam, Science Park 904, Amsterdam 1098 XH, The Netherlands.

Centre for Analytical Sciences Amsterdam (CASA), 1098 XH, Amsterdam, The Netherlands.

出版信息

Anal Chem. 2022 Apr 12;94(14):5599-5607. doi: 10.1021/acs.analchem.1c05336. Epub 2022 Mar 28.

Abstract

A fast algorithm for automated feature mining of synthetic (industrial) homopolymers or perfectly alternating copolymers was developed. Comprehensive two-dimensional liquid chromatography-mass spectrometry data (LC × LC-MS) was utilized, undergoing four distinct parts within the algorithm. Initially, the data is reduced by selecting regions of interest within the data. Then, all regions of interest are clustered on the time and mass-to-charge domain to obtain isotopic distributions. Afterward, single-value clusters and background signals are removed from the data structure. In the second part of the algorithm, the isotopic distributions are employed to define the charge state of the polymeric units and the charge-state reduced masses of the units are calculated. In the third part, the mass of the repeating unit (, the monomer) is automatically selected by comparing all mass differences within the data structure. Using the mass of the repeating unit, mass remainder analysis can be performed on the data. This results in groups sharing the same end-group compositions. Lastly, combining information from the clustering step in the first part and the mass remainder analysis results in the creation of compositional series, which are mapped on the chromatogram. Series with similar chromatographic behavior are separated in the mass-remainder domain, whereas series with an overlapping mass remainder are separated in the chromatographic domain. These series were extracted within a calculation time of 3 min. The false positives were then assessed within a reasonable time. The algorithm is verified with LC × LC-MS data of an industrial hexahydrophthalic anhydride-derivatized propylene glycol-terephthalic acid copolyester. Afterward, a chemical structure proposal has been made for each compositional series found within the data.

摘要

开发了一种用于自动挖掘合成(工业)均聚物或完全交替共聚物特征的快速算法。利用了全面的二维液相色谱-质谱数据(LC×LC-MS),该算法包含四个不同的部分。首先,通过在数据中选择感兴趣的区域来减少数据。然后,将所有感兴趣的区域在时间和质荷比域上聚类,以获得同位素分布。之后,从数据结构中去除单值聚类和背景信号。在算法的第二部分,利用同位素分布来定义聚合物单元的电荷状态,并计算单元的电荷状态减少质量。在第三部分,通过比较数据结构中的所有质量差异,自动选择重复单元(即单体)的质量。使用重复单元的质量,可以对数据进行质量剩余分析。这会导致具有相同端基组成的组。最后,结合第一部分聚类步骤和质量剩余分析结果的信息,创建在色谱图上映射的组成系列。具有相似色谱行为的系列在质量剩余域中分离,而具有重叠质量剩余的系列在色谱域中分离。这些系列在 3 分钟的计算时间内被提取出来。然后在合理的时间内评估假阳性。该算法通过工业六氢邻苯二甲酸酐衍生的丙二醇对苯二甲酸共聚酯的 LC×LC-MS 数据进行了验证。之后,对数据中发现的每个组成系列提出了化学结构建议。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/436a/9008690/3e964b982ffd/ac1c05336_0002.jpg

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验