Ko Wonjun, Jung Wonsik, Jeon Eunjin, Suk Heung-Il
IEEE Trans Med Imaging. 2022 Sep;41(9):2348-2359. doi: 10.1109/TMI.2022.3162870. Epub 2022 Aug 31.
Imaging genetics, one of the foremost emerging topics in the medical imaging field, analyzes the inherent relations between neuroimaging and genetic data. As deep learning has gained widespread acceptance in many applications, pioneering studies employed deep learning frameworks for imaging genetics. However, existing approaches suffer from some limitations. First, they often adopt a simple strategy for joint learning of phenotypic and genotypic features. Second, their findings have not been extended to biomedical applications, e.g., degenerative brain disease diagnosis and cognitive score prediction. Finally, existing studies perform insufficient and inappropriate analyses from the perspective of data science and neuroscience. In this work, we propose a novel deep learning framework to simultaneously tackle the aforementioned issues. Our proposed framework learns to effectively represent the neuroimaging and the genetic data jointly, and achieves state-of-the-art performance when used for Alzheimer's disease and mild cognitive impairment identification. Furthermore, unlike the existing methods, the framework enables learning the relation between imaging phenotypes and genotypes in a nonlinear way without any prior neuroscientific knowledge. To demonstrate the validity of our proposed framework, we conducted experiments on a publicly available dataset and analyzed the results from diverse perspectives. Based on our experimental results, we believe that the proposed framework has immense potential to provide new insights and perspectives in deep learning-based imaging genetics studies.
影像遗传学是医学影像领域中最重要的新兴主题之一,它分析神经影像与基因数据之间的内在关系。随着深度学习在许多应用中得到广泛认可,开创性研究将深度学习框架用于影像遗传学。然而,现有方法存在一些局限性。首先,它们通常采用简单策略来联合学习表型和基因型特征。其次,其研究结果尚未扩展到生物医学应用,如退行性脑疾病诊断和认知评分预测。最后,现有研究从数据科学和神经科学角度进行的分析不足且不合适。在这项工作中,我们提出了一种新颖的深度学习框架来同时解决上述问题。我们提出的框架学会有效联合表示神经影像和基因数据,并在用于阿尔茨海默病和轻度认知障碍识别时取得了领先的性能。此外,与现有方法不同,该框架能够在无需任何先验神经科学知识的情况下以非线性方式学习影像表型与基因型之间的关系。为了证明我们提出的框架的有效性,我们在一个公开可用的数据集上进行了实验,并从不同角度分析了结果。基于我们的实验结果,我们相信所提出的框架在基于深度学习的影像遗传学研究中具有巨大潜力,能够提供新的见解和观点。