Suppr超能文献

BIGFormer:一种具有局部结构感知能力的图变换器,用于利用影像遗传学数据诊断和识别阿尔茨海默病的发病机制

BIGFormer: A Graph Transformer With Local Structure Awareness for Diagnosis and Pathogenesis Identification of Alzheimer's Disease Using Imaging Genetic Data.

作者信息

Zou Qi, Shang Junliang, Liu Jin-Xing, Gao Rui

出版信息

IEEE J Biomed Health Inform. 2025 Jan;29(1):495-506. doi: 10.1109/JBHI.2024.3442468. Epub 2025 Jan 7.

Abstract

Alzheimer's disease (AD) is a highly inheritable neurological disorder, and brain imaging genetics (BIG) has become a rapidly advancing field for comprehensive understanding its pathogenesis. However, most of the existing approaches underestimate the complexity of the interactions among factors that cause AD. To take full appreciate of these complexity interactions, we propose BIGFormer, a graph Transformer with local structural awareness, for AD diagnosis and identification of pathogenic mechanisms. Specifically, the factors interaction graph is constructed with lesion brain regions and risk genes as nodes, where the connection between nodes intuitively represents the interaction between nodes. After that, a perception with local structure awareness is built to extract local structure around nodes, which is then injected into node representation. Then, the global reliance inference component assembles the local structure into higher-order structure, and multi-level interaction structures are jointly aggregated into a classification projection head for disease state prediction. Experimental results show that BIGFormer demonstrated superiority in four classification tasks on the AD neuroimaging initiative dataset and proved to identify biomarkers closely intimately related to AD.

摘要

阿尔茨海默病(AD)是一种具有高度遗传性的神经疾病,而脑成像遗传学(BIG)已成为一个快速发展的领域,用于全面理解其发病机制。然而,现有的大多数方法都低估了导致AD的因素之间相互作用的复杂性。为了充分认识这些复杂的相互作用,我们提出了BIGFormer,一种具有局部结构感知的图Transformer,用于AD诊断和致病机制识别。具体来说,以病变脑区和风险基因为节点构建因素相互作用图,其中节点之间的连接直观地表示节点之间的相互作用。之后,构建一个具有局部结构感知的感知器来提取节点周围的局部结构,然后将其注入到节点表示中。然后,全局依赖推理组件将局部结构组装成高阶结构,多级相互作用结构被联合聚集到一个分类投影头中用于疾病状态预测。实验结果表明,BIGFormer在阿尔茨海默病神经影像计划数据集的四项分类任务中表现出优越性,并被证明能够识别与AD密切相关的生物标志物。

相似文献

5
Dopamine transporter imaging for the diagnosis of dementia with Lewy bodies.用于诊断路易体痴呆的多巴胺转运体成像
Cochrane Database Syst Rev. 2015 Jan 30;1(1):CD010633. doi: 10.1002/14651858.CD010633.pub2.

本文引用的文献

1
Brain Cognition-Inspired Dual-Pathway CNN Architecture for Image Classification.用于图像分类的受脑认知启发的双路径卷积神经网络架构
IEEE Trans Neural Netw Learn Syst. 2024 Jul;35(7):9900-9914. doi: 10.1109/TNNLS.2023.3237962. Epub 2024 Jul 8.
2
BAI-Net: Individualized Anatomical Cerebral Cartography Using Graph Neural Network.BAI-Net:基于图神经网络的个体化解剖脑图谱绘制。
IEEE Trans Neural Netw Learn Syst. 2024 Jun;35(6):7446-7457. doi: 10.1109/TNNLS.2022.3213581. Epub 2024 Jun 3.
4
Neuromorphic Camera Denoising Using Graph Neural Network-Driven Transformers.基于图神经网络驱动的变压器的神经形态相机去噪
IEEE Trans Neural Netw Learn Syst. 2024 Mar;35(3):4110-4124. doi: 10.1109/TNNLS.2022.3201830. Epub 2024 Feb 29.
7
Hierarchical Graph Convolutional Networks for Structured Long Document Classification.用于结构化长文档分类的层次图卷积网络
IEEE Trans Neural Netw Learn Syst. 2023 Oct;34(10):8071-8085. doi: 10.1109/TNNLS.2022.3185295. Epub 2023 Oct 5.
9
Alzheimer's disease drug development pipeline: 2022.2022年阿尔茨海默病药物研发进展
Alzheimers Dement (N Y). 2022 May 4;8(1):e12295. doi: 10.1002/trc2.12295. eCollection 2022.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验