Department I of Internal Medicine, Center for Integrated Oncology (CIO) Köln-Bonn.
Cologne Excellence Cluster for Cellular Stress Responses in Ageing-Associated Diseases (CECAD), and.
Blood. 2022 Jun 23;139(25):3617-3629. doi: 10.1182/blood.2021014007.
Genetic alterations in the DNA damage response (DDR) pathway are a frequent mechanism of resistance to chemoimmunotherapy (CIT) in B-cell malignancies. We have previously shown that the synergy of CIT relies on secretory crosstalk elicited by chemotherapy between the tumor cells and macrophages. Here, we show that loss of multiple different members of the DDR pathway inhibits macrophage phagocytic capacity in vitro and in vivo. Particularly, loss of TP53 led to decreased phagocytic capacity ex vivo across multiple B-cell malignancies. We demonstrate via in vivo cyclophosphamide treatment using the Eμ-TCL1 mouse model that loss of macrophage phagocytic capacity in Tp53-deleted leukemia is driven by a significant downregulation of a phagocytic transcriptomic signature using small conditional RNA sequencing. By analyzing the tumor B-cell proteome, we identified a TP53-specific upregulation of proteins associated with extracellular vesicles (EVs). We abrogated EV biogenesis in tumor B-cells via clustered regularly interspaced short palindromic repeats (CRISPR)-knockout (KO) of RAB27A and confirmed that the EVs from TP53-deleted lymphoma cells were responsible for the reduced phagocytic capacity and the in vivo CIT resistance. Furthermore, we observed that TP53 loss led to an upregulation of both PD-L1 cell surface expression and secretion of EVs by lymphoma cells. Disruption of EV bound PD-L1 by anti-PD-L1 antibodies or PD-L1 CRISPR-KO improved macrophage phagocytic capacity and in vivo therapy response. Thus, we demonstrate enhanced EV release and increased PD-L1 expression in TP53-deficient B-cell lymphomas as novel mechanisms of macrophage function alteration in CIT resistance. This study indicates the use of checkpoint inhibition in the combination treatment of B-cell malignancies with TP53 loss.
DNA 损伤反应 (DDR) 途径中的遗传改变是 B 细胞恶性肿瘤对化疗免疫治疗 (CIT) 产生耐药性的常见机制。我们之前已经表明,CIT 的协同作用依赖于化疗在肿瘤细胞和巨噬细胞之间引发的分泌串扰。在这里,我们表明 DDR 途径中多个不同成员的缺失会抑制体外和体内巨噬细胞的吞噬能力。特别是,TP53 的缺失导致多种 B 细胞恶性肿瘤的体外吞噬能力降低。我们通过使用 Eμ-TCL1 小鼠模型进行体内环磷酰胺治疗证明,Tp53 缺失白血病中巨噬细胞吞噬能力的丧失是由吞噬转录组特征的显著下调驱动的,这是通过小型条件 RNA 测序来实现的。通过分析肿瘤 B 细胞蛋白质组,我们鉴定出 TP53 特异性上调与细胞外囊泡 (EV) 相关的蛋白质。我们通过 RAB27A 的 CRISPR 敲除 (KO) 来阻断肿瘤 B 细胞中的 EV 生物发生,并证实来自 TP53 缺失淋巴瘤细胞的 EV 负责降低的吞噬能力和体内 CIT 耐药性。此外,我们观察到 TP53 缺失导致淋巴瘤细胞中 PD-L1 细胞表面表达和 EV 分泌的上调。通过抗 PD-L1 抗体或 PD-L1 CRISPR-KO 破坏 EV 结合的 PD-L1 可改善巨噬细胞的吞噬能力和体内治疗反应。因此,我们证明了 TP53 缺陷的 B 细胞淋巴瘤中 EV 释放增加和 PD-L1 表达增加是 CIT 耐药性中巨噬细胞功能改变的新机制。这项研究表明,在 TP53 缺失的 B 细胞恶性肿瘤的联合治疗中使用检查点抑制。