Giuffrida Alexander S, Ramesh Karthik, Sheriff Sulaiman, Maudsley Andrew A, Weinberg Brent D, Cooper Lee A D, Shim Hyunsuk
Department of Radiation Oncology, Emory University School of Medicine, Atlanta, GA 30322, USA.
Department of Biomedical Engineering, Emory University and Georgia Institute of Technology, Atlanta, GA 30332, USA.
Cancers (Basel). 2025 Jan 27;17(3):423. doi: 10.3390/cancers17030423.
Spectroscopic MRI (sMRI) is a quantitative imaging technique that maps infiltrated tumors in the brain without contrast injections. In a previous study (NCT03137888), sMRI-guided radiation treatment extended patient survival, showing promise for clinical translation. The spectral fitting of individual voxels in an sMRI dataset generate metabolite concentration maps that guide treatment. The established spectral analysis methods use iterative least-squares fitting (FITT) that are computationally demanding. This study compares the performance of NNFit, a neural network-based, accelerated spectral fitting model, to the established FITT for metabolite quantification and radiation treatment planning.
NNFit is a self-supervised deep learning model trained on 50 ms echo-time (TE) sMRI data to estimate metabolite levels of choline (Cho), creatine (Cr), and NAA. We trained the model on 30 GBM patients (56 scans) and tested it on 17 GBM patients (29 scans). NNFit's performance was compared to the FITT using structural similarity indices (SSIM) and the Dice coefficient.
NNFit significantly improved processing speed while maintaining strong agreement with FITT. The radiation target volumes defined by Cho/NAA ≥ 2x were visually comparable, with fewer artifacts in NNFit. Structural similarity indices (SSIM) indicated minimal bias and high consistency across methods.
This study highlights NNFit's potential for rapid, accurate, and artifact-reduced metabolic imaging, enabling faster radiotherapy planning.
磁共振波谱成像(sMRI)是一种定量成像技术,无需注射造影剂即可对脑内浸润性肿瘤进行成像。在先前的一项研究(NCT03137888)中,sMRI引导的放射治疗延长了患者的生存期,显示出临床转化的前景。sMRI数据集中单个体素的谱拟合生成指导治疗的代谢物浓度图。已建立的谱分析方法使用计算要求较高的迭代最小二乘法拟合(FITT)。本研究比较了基于神经网络的加速谱拟合模型NNFit与已建立的FITT在代谢物定量和放射治疗计划方面的性能。
NNFit是一种自监督深度学习模型,在50毫秒回波时间(TE)的sMRI数据上进行训练,以估计胆碱(Cho)、肌酸(Cr)和N-乙酰天门冬氨酸(NAA)的代谢物水平。我们在30例胶质母细胞瘤患者(56次扫描)上训练该模型,并在17例胶质母细胞瘤患者(29次扫描)上进行测试。使用结构相似性指数(SSIM)和骰子系数将NNFit的性能与FITT进行比较。
NNFit在保持与FITT高度一致的同时,显著提高了处理速度。由Cho/NAA≥2x定义的放射靶体积在视觉上具有可比性,NNFit中的伪影较少。结构相似性指数(SSIM)表明各方法之间偏差最小且一致性高。
本研究突出了NNFit在快速、准确和减少伪影的代谢成像方面的潜力,可实现更快的放射治疗计划。