文献检索文档翻译深度研究
Suppr Zotero 插件Zotero 插件
邀请有礼套餐&价格历史记录

新学期,新优惠

限时优惠:9月1日-9月22日

30天高级会员仅需29元

1天体验卡首发特惠仅需5.99元

了解详情
不再提醒
插件&应用
Suppr Zotero 插件Zotero 插件浏览器插件Mac 客户端Windows 客户端微信小程序
高级版
套餐订阅购买积分包
AI 工具
文献检索文档翻译深度研究
关于我们
关于 Suppr公司介绍联系我们用户协议隐私条款
关注我们

Suppr 超能文献

核心技术专利:CN118964589B侵权必究
粤ICP备2023148730 号-1Suppr @ 2025

金属-酚醛网络生物界面介导的骨组织再生细胞调控

Metal-phenolic network biointerface-mediated cell regulation for bone tissue regeneration.

作者信息

Wang Ying, Li Zhibang, Yu Ruiqing, Chen Yi, Wang Danyang, Zhao Weiwei, Ge Shaohua, Liu Hong, Li Jianhua

机构信息

Department of Biomaterials, School and Hospital of Stomatology, Cheeloo College of Medicine, Shandong University & Shandong Key Laboratory of Oral Tissue Regeneration & Shandong Engineering Research Center of Dental Materials and Oral Tissue Regeneration & Shandong Provincial Clinical Research Center for Oral Diseases, Jinan, 250012, China.

State Key Laboratory of Crystal Materials, Shandong University, Jinan, Shandong, 250100, China.

出版信息

Mater Today Bio. 2024 Dec 12;30:101400. doi: 10.1016/j.mtbio.2024.101400. eCollection 2025 Feb.


DOI:10.1016/j.mtbio.2024.101400
PMID:39759849
原文链接:https://pmc.ncbi.nlm.nih.gov/articles/PMC11699301/
Abstract

Bone tissue regeneration presents a significant challenge in clinical treatment due to inadequate coordination between implant materials and reparative cells at the biomaterial-bone interfaces. This gap underscores the necessity of enhancing interaction modulation between cells and biomaterials, which is a crucial focus in bone tissue engineering. Metal-polyphenolic networks (MPN) are novel inorganic-organic hybrid complexes that are formed through coordination interactions between phenolic ligands and metal ions. These networks provide a multifunctional platform for biomedical applications, with the potential for tailored design and modifications. Despite advances in understanding MPN and their role in bone tissue regeneration, a comprehensive overview of the related mechanisms is lacking. Here, we address this gap by focusing on MPN biointerface-mediated cellular regulatory mechanisms during bone regeneration. We begin by reviewing the natural healing processes of bone defects, followed by a detailed examination of MPN, including their constituents and distinctive characteristics. We then explore the regulatory influence of MPN biointerfaces on key cellular activities during bone regeneration. Additionally, we illustrate their primary applications in addressing inflammatory bone loss, regenerating critical-size bone defects, and enhancing implant-bone integration. In conclusion, this review elucidates how MPN-based interfaces facilitate effective bone tissue regeneration, advancing our understanding of material interface-mediated cellular control and the broader field of tissue engineering.

摘要

由于生物材料与骨界面处植入材料与修复细胞之间的协调不足,骨组织再生在临床治疗中面临重大挑战。这一差距凸显了加强细胞与生物材料之间相互作用调节的必要性,这是骨组织工程的一个关键重点。金属多酚网络(MPN)是通过酚类配体与金属离子之间的配位相互作用形成的新型无机-有机杂化复合物。这些网络为生物医学应用提供了一个多功能平台,具有定制设计和修饰的潜力。尽管在理解MPN及其在骨组织再生中的作用方面取得了进展,但仍缺乏对相关机制的全面概述。在这里,我们通过关注骨再生过程中MPN生物界面介导的细胞调节机制来弥补这一差距。我们首先回顾骨缺损的自然愈合过程,然后详细研究MPN,包括其组成和独特特性。然后,我们探讨MPN生物界面在骨再生过程中对关键细胞活动的调节影响。此外,我们阐述了它们在解决炎症性骨丢失、再生临界尺寸骨缺损以及增强植入物与骨整合方面的主要应用。总之,本综述阐明了基于MPN的界面如何促进有效的骨组织再生,增进了我们对材料界面介导的细胞控制以及更广泛的组织工程领域的理解。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/792e/11699301/954d24b2b48b/gr9.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/792e/11699301/5b5a92358a9f/ga1.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/792e/11699301/466844e07a5d/sc1.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/792e/11699301/774fb62010d2/gr1.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/792e/11699301/452051a5ad21/gr2.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/792e/11699301/462c72db4da1/gr3.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/792e/11699301/f70307f31025/gr4.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/792e/11699301/fb0d6c890888/gr5.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/792e/11699301/8fe95c858672/gr6.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/792e/11699301/ccd42dc09c3b/gr7.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/792e/11699301/208e9f94e8f8/gr8.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/792e/11699301/954d24b2b48b/gr9.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/792e/11699301/5b5a92358a9f/ga1.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/792e/11699301/466844e07a5d/sc1.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/792e/11699301/774fb62010d2/gr1.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/792e/11699301/452051a5ad21/gr2.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/792e/11699301/462c72db4da1/gr3.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/792e/11699301/f70307f31025/gr4.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/792e/11699301/fb0d6c890888/gr5.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/792e/11699301/8fe95c858672/gr6.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/792e/11699301/ccd42dc09c3b/gr7.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/792e/11699301/208e9f94e8f8/gr8.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/792e/11699301/954d24b2b48b/gr9.jpg

相似文献

[1]
Metal-phenolic network biointerface-mediated cell regulation for bone tissue regeneration.

Mater Today Bio. 2024-12-12

[2]
Metal Phenolic Nanodressing of Porous Polymer Scaffolds for Enhanced Bone Regeneration via Interfacial Gating Growth Factor Release and Stem Cell Differentiation.

ACS Appl Mater Interfaces. 2022-1-12

[3]
Unlocking the Potential of Gallic Acid-Based Metal Phenolic Networks for Innovative Adsorbent Design.

Molecules. 2025-3-8

[4]
Applications of X-ray computed tomography for the evaluation of biomaterial-mediated bone regeneration in critical-sized defects.

J Microsc. 2020-3

[5]
Janus porous polylactic acid membranes with versatile metal-phenolic interface for biomimetic periodontal bone regeneration.

NPJ Regen Med. 2023-6-3

[6]
Metal-phenolic network coatings for engineering bioactive interfaces.

Colloids Surf B Biointerfaces. 2021-9

[7]
Multifunctional Metal-Phenolic Composites Promote Efficient Periodontitis Treatment via Antibacterial and Osteogenic Properties.

ACS Appl Mater Interfaces. 2024-3-20

[8]
Incorporation of metal-doped silicate microparticles into collagen scaffolds combines chemical and architectural cues for endochondral bone healing.

Acta Biomater. 2025-1-15

[9]
Spray Assembly of Metal-Phenolic Networks: Formation, Growth, and Applications.

ACS Appl Mater Interfaces. 2018-9-21

[10]
Dynamic Synthetic Biointerfaces: From Reversible Chemical Interactions to Tunable Biological Effects.

Acc Chem Res. 2019-2-22

引用本文的文献

[1]
Gynecologic postoperative anti-adhesion barriers: From biomaterials to barrier development.

Biomater Biosyst. 2025-8-5

[2]
Metal-Phenolic Network-Directed Coating of : A Promising Strategy to Increase Stability.

Foods. 2025-6-26

[3]
Layered double hydroxides for regenerative nanomedicine and tissue engineering: recent advances and future perspectives.

J Nanobiotechnology. 2025-5-22

[4]
Microenvironment-responsive nanoparticles functionalized titanium implants mediate redox balance and immunomodulation for enhanced osseointegration.

Mater Today Bio. 2025-3-2

[5]
Adhesive micro-liquid for efficient removal of bacterial biofilm infection.

Mater Today Bio. 2025-1-27

本文引用的文献

[1]
Regulatory T cells engineered with polyphenol-functionalized immunosuppressant nanocomplexes for rebuilding periodontal hard tissue under inflammation-challenged microenvironment.

Biomaterials. 2025-4

[2]
Assembly of Silicate-Phenolic Network Coatings with Tunable Properties for Controlled Release of Small Molecules.

Adv Mater. 2024-12

[3]
Zinc and melatonin mediated antimicrobial, anti-inflammatory, and antioxidant coatings accelerate bone defect repair.

Colloids Surf B Biointerfaces. 2025-1

[4]
Multifunctional sericin-based biomineralized nanoplatforms with immunomodulatory and angio/osteo-genic activity for accelerated bone regeneration in periodontitis.

Biomaterials. 2025-3

[5]
Metal-phenolic network composites: from fundamentals to applications.

Chem Soc Rev. 2024-11-12

[6]
Zinc finger-inspired peptide-metal-phenolic nanointerface enhances bone-implant integration under bacterial infection microenvironment through immune modulation and osteogenesis promotion.

Bioact Mater. 2024-8-23

[7]
Developing fibrin-based biomaterials/scaffolds in tissue engineering.

Bioact Mater. 2024-8-15

[8]
Accelerated Bone Healing via Electrical Stimulation.

Adv Sci (Weinh). 2024-8-8

[9]
Antibacterial and Osteogenic Dual-Functional Micronano Composite Scaffold Fabricated via Melt Electrowriting and Solution Electrospinning for Bone Tissue Engineering.

ACS Appl Mater Interfaces. 2024-7-24

[10]
Cellular Scale Curvature in Bioceramic Scaffolds Enhanced Bone Regeneration by Regulating Skeletal Stem Cells and Vascularization.

Adv Healthc Mater. 2024-11

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

推荐工具

医学文档翻译智能文献检索