Department of Microbiology and Immunology, Life Sciences Institute, University of British Columbia, Vancouver, British Columbia, Canada.
Department of Microbiology and Immunology, Cornell University College of Veterinary Medicine, Ithaca, NY, USA.
Nature. 2022 May;605(7909):340-348. doi: 10.1038/s41586-022-04661-w. Epub 2022 Mar 28.
The COVID-19 pandemic caused by the SARS-CoV-2 virus remains a global public health crisis. Although widespread vaccination campaigns are underway, their efficacy is reduced owing to emerging variants of concern. Development of host-directed therapeutics and prophylactics could limit such resistance and offer urgently needed protection against variants of concern. Attractive pharmacological targets to impede viral entry include type-II transmembrane serine proteases (TTSPs) such as TMPRSS2; these proteases cleave the viral spike protein to expose the fusion peptide for cell entry, and thus have an essential role in the virus lifecycle. Here we identify and characterize a small-molecule compound, N-0385, which exhibits low nanomolar potency and a selectivity index of higher than 10 in inhibiting SARS-CoV-2 infection in human lung cells and in donor-derived colonoids. In Calu-3 cells it inhibits the entry of the SARS-CoV-2 variants of concern B.1.1.7 (Alpha), B.1.351 (Beta), P.1 (Gamma) and B.1.617.2 (Delta). Notably, in the K18-human ACE2 transgenic mouse model of severe COVID-19, we found that N-0385 affords a high level of prophylactic and therapeutic benefit after multiple administrations or even after a single administration. Together, our findings show that TTSP-mediated proteolytic maturation of the spike protein is critical for SARS-CoV-2 infection in vivo, and suggest that N-0385 provides an effective early treatment option against COVID-19 and emerging SARS-CoV-2 variants of concern.
由 SARS-CoV-2 病毒引起的 COVID-19 大流行仍然是全球公共卫生危机。尽管正在进行广泛的疫苗接种运动,但由于出现了令人关注的变异株,其效果降低了。开发针对宿主的治疗药物和预防药物可以限制这种耐药性,并为关注的变异株提供急需的保护。阻止病毒进入的有吸引力的药理学靶标包括 II 型跨膜丝氨酸蛋白酶(TTSPs),如 TMPRSS2;这些蛋白酶切割病毒刺突蛋白以暴露出融合肽以进行细胞进入,因此在病毒生命周期中具有重要作用。在这里,我们鉴定并表征了一种小分子化合物 N-0385,它在抑制人类肺细胞和供体衍生的类器官中的 SARS-CoV-2 感染方面表现出低纳摩尔效力和高于 10 的选择性指数。在 Calu-3 细胞中,它抑制了关注的 SARS-CoV-2 变体 B.1.1.7(Alpha)、B.1.351(Beta)、P.1(Gamma)和 B.1.617.2(Delta)的进入。值得注意的是,在严重 COVID-19 的 K18-人 ACE2 转基因小鼠模型中,我们发现 N-0385 在多次给药甚至单次给药后都能提供高水平的预防和治疗益处。总之,我们的研究结果表明,TTSP 介导的刺突蛋白蛋白水解成熟对于 SARS-CoV-2 体内感染至关重要,并表明 N-0385 为 COVID-19 和新兴的 SARS-CoV-2 关注变异株提供了有效的早期治疗选择。