Suppr超能文献

SARS-CoV-2 奥密克戎变体的进入是通过人类气道和肠类器官模型中的 II 型跨膜丝氨酸蛋白酶介导的。

SARS-CoV-2 Omicron entry is type II transmembrane serine protease-mediated in human airway and intestinal organoid models.

机构信息

Viroscience Department, Erasmus Medical Center , Rotterdam, the Netherlands.

Oncode Institute, Hubrecht Institute, Royal Netherlands Academy of Arts and Sciences and University Medical Center , Amsterdam, the Netherlands.

出版信息

J Virol. 2023 Aug 31;97(8):e0085123. doi: 10.1128/jvi.00851-23. Epub 2023 Aug 9.

Abstract

SARS-CoV-2 can enter cells after its spike protein is cleaved by either type II transmembrane serine proteases (TTSPs), like TMPRSS2, or cathepsins. It is now widely accepted that the Omicron variant uses TMPRSS2 less efficiently and instead enters cells via cathepsins, but these findings have yet to be verified in more relevant cell models. Although we could confirm efficient cathepsin-mediated entry for Omicron in a monkey kidney cell line, experiments with protease inhibitors showed that Omicron (BA.1 and XBB1.5) did not use cathepsins for entry into human airway organoids and instead utilized TTSPs. Likewise, CRISPR-edited intestinal organoids showed that entry of Omicron BA.1 relied on the expression of the serine protease TMPRSS2 but not cathepsin L or B. Together, these data force us to rethink the concept that Omicron has adapted to cathepsin-mediated entry and indicate that TTSP inhibitors should not be dismissed as prophylactic or therapeutic antiviral strategy against SARS-CoV-2. IMPORTANCE Coronavirus entry relies on host proteases that activate the viral fusion protein, spike. These proteases determine the viral entry route, tropism, host range, and can be attractive drug targets. Whereas earlier studies using cell lines suggested that the Omicron variant of SARS-CoV-2 has changed its protease usage, from cell surface type II transmembrane serine proteases (TTSPs) to endosomal cathepsins, we report that this is not the case in human airway and intestinal organoid models, suggesting that host TTSP inhibition is still a viable prophylactic or therapeutic antiviral strategy against current SARS-CoV-2 variants and highlighting the importance of relevant human cell models.

摘要

SARS-CoV-2 可以在其刺突蛋白被 II 型跨膜丝氨酸蛋白酶(如 TMPRSS2)或组织蛋白酶切割后进入细胞。现在人们普遍认为,奥密克戎变体利用 TMPRSS2 的效率较低,而是通过组织蛋白酶进入细胞,但这些发现尚未在更相关的细胞模型中得到验证。尽管我们可以在猴肾细胞系中确认奥密克戎通过组织蛋白酶介导的有效进入,但使用蛋白酶抑制剂的实验表明,奥密克戎(BA.1 和 XBB1.5)并不通过组织蛋白酶进入人呼吸道类器官,而是利用 TTSPs。同样,经过 CRISPR 编辑的肠类器官实验表明,奥密克戎 BA.1 的进入依赖于丝氨酸蛋白酶 TMPRSS2 的表达,而不依赖于组织蛋白酶 L 或 B。这些数据迫使我们重新思考奥密克戎已适应组织蛋白酶介导进入的概念,并表明 TTSP 抑制剂不应被排除作为针对 SARS-CoV-2 的预防或治疗性抗病毒策略。

重要性

冠状病毒进入依赖于激活病毒融合蛋白(刺突)的宿主蛋白酶。这些蛋白酶决定了病毒的进入途径、嗜性、宿主范围,并且可以成为有吸引力的药物靶点。虽然早期使用细胞系的研究表明,SARS-CoV-2 的奥密克戎变体已改变其蛋白酶的使用方式,从细胞表面的 II 型跨膜丝氨酸蛋白酶(TTSPs)转变为内体组织蛋白酶,但我们报告在人类气道和肠类器官模型中并非如此,这表明宿主 TTSP 抑制仍然是针对当前 SARS-CoV-2 变体的可行预防或治疗性抗病毒策略,并强调了相关人类细胞模型的重要性。

相似文献

引用本文的文献

6
Organoids in virology.病毒学中的类器官
Npj Viruses. 2024 Feb 7;2(1):5. doi: 10.1038/s44298-024-00017-5.

本文引用的文献

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验