Suppr超能文献

基于三元网络和 SVM 的新型智能轴承故障诊断模型。

A new intelligent bearing fault diagnosis model based on triplet network and SVM.

机构信息

School of Computer Science and Engineering, Tianjin University of Technology, Tianjin, 300384, China.

Tianjin Key Laboratory of Advanced Mechatronic System Design and Intelligent Control, School of Mechanical Engineering, Tianjin University of Technology, Tianjin, 300384, China.

出版信息

Sci Rep. 2022 Mar 28;12(1):5234. doi: 10.1038/s41598-022-08956-w.

Abstract

Separating sensitive characteristic signals from original vibration data is an important challenge for rolling bearing fault diagnosis. Because it is difficult to obtain large number of damaged bearings, Rolling bearing fault datasets are often small sample datasets. For the classification of small sample rolling bearing fault datasets, we propose a coupling vibration data classification method based on triplet embedding. The method is divided into two steps: feature extraction and fault identification. First, build a triple embedding based on the CNN model to reduce the original vibration signal, and then train the SVM model for classification. Compared with traditional features and autoencoder, triplet network can learn the differences between samples. Make classification training easier and more accurate. We have evaluated the performance of this method through two bearing experiment examples. The experimental results show that this method is superior to stacked autoencoder, stacked denoising autoencoder and CNN.

摘要

从原始振动数据中分离敏感特征信号是滚动轴承故障诊断的一个重要挑战。由于难以获得大量损坏的轴承,因此滚动轴承故障数据集通常是小样本数据集。针对小样本滚动轴承故障数据集的分类问题,提出了一种基于三重嵌入的耦合振动数据分类方法。该方法分为两步:特征提取和故障识别。首先,基于 CNN 模型构建三重嵌入以降低原始振动信号,然后使用 SVM 模型进行分类。与传统特征和自动编码器相比,三重网络可以学习样本之间的差异,从而使分类训练更容易且更准确。我们通过两个轴承实验示例评估了该方法的性能。实验结果表明,该方法优于堆叠自动编码器、堆叠去噪自动编码器和 CNN。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/9dec/8960866/1d7d52822b0d/41598_2022_8956_Fig1_HTML.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验