Guo Zhilin, Zeng Weiqi, Yu Taidong, Xu Yan, Xiao Yang, Cao Xuebing, Cao Zhiguo
IEEE J Biomed Health Inform. 2022 Aug;26(8):3848-3859. doi: 10.1109/JBHI.2022.3162386. Epub 2022 Aug 11.
Finger tapping test is crucial for diagnosing Parkinson's Disease (PD), but manual visual evaluations can result in score discrepancy due to clinicians' subjectivity. Moreover, applying wearable sensors requires making physical contact and may hinder PD patient's raw movement patterns. Accordingly, a novel computer-vision approach is proposed using depth camera and spatial-temporal 3D hand pose estimation to capture and evaluate PD patients' 3D hand movement. Within this approach, a temporal encoding module is leveraged to extend A2J's deep learning framework to counter the pose jittering problem, and a pose refinement process is utilized to alleviate dependency on massive data. Additionally, the first vision-based 3D PD hand dataset of 112 hand samples from 48 PD patients and 11 control subjects is constructed, fully annotated by qualified physicians under clinical settings. Testing on this real-world data, this new model achieves 81.2% classification accuracy, even surpassing that of individual clinicians in comparison, fully demonstrating this proposition's effectiveness. The demo video can be accessed at https://github.com/ZhilinGuo/ST-A2J.
手指敲击测试对于帕金森病(PD)的诊断至关重要,但由于临床医生的主观性,人工视觉评估可能会导致评分差异。此外,应用可穿戴传感器需要进行身体接触,可能会妨碍帕金森病患者的原始运动模式。因此,提出了一种新颖的计算机视觉方法,利用深度相机和时空3D手部姿态估计来捕捉和评估帕金森病患者的3D手部运动。在这种方法中,利用时间编码模块扩展A2J的深度学习框架以应对姿态抖动问题,并利用姿态细化过程来减轻对大量数据的依赖。此外,构建了第一个基于视觉的3D帕金森病手部数据集,包含来自48名帕金森病患者和11名对照受试者的112个手部样本,并由合格医生在临床环境下进行了全面注释。在这些真实世界数据上进行测试,这个新模型实现了81.2%的分类准确率,甚至超过了个别临床医生的准确率,充分证明了该方法的有效性。演示视频可在https://github.com/ZhilinGuo/ST-A2J上获取。