Suppr超能文献

将成人和儿科患者数据相结合,开发用于儿童的临床决策支持工具:利用机器学习对异质性进行建模。

Combining adult with pediatric patient data to develop a clinical decision support tool intended for children: leveraging machine learning to model heterogeneity.

机构信息

Department of Computer Science, Duke University, Durham, NC, USA.

Children's Health and Discovery Initiative, Department of Pediatrics, Duke University, Durham, NC, USA.

出版信息

BMC Med Inform Decis Mak. 2022 Mar 29;22(1):84. doi: 10.1186/s12911-022-01827-4.

Abstract

BACKGROUND

Clinical decision support (CDS) tools built using adult data do not typically perform well for children. We explored how best to leverage adult data to improve the performance of such tools. This study assesses whether it is better to build CDS tools for children using data from children alone or to use combined data from both adults and children.

METHODS

Retrospective cohort using data from 2017 to 2020. Participants include all individuals (adults and children) receiving an elective surgery at a large academic medical center that provides adult and pediatric services. We predicted need for mechanical ventilation or admission to the intensive care unit (ICU). Predictor variables included demographic, clinical, and service utilization factors known prior to surgery. We compared predictive models built using machine learning to regression-based methods that used a pediatric or combined adult-pediatric cohort. We compared model performance based on Area Under the Receiver Operator Characteristic.

RESULTS

While we found that adults and children have different risk factors, machine learning methods are able to appropriately model the underlying heterogeneity of each population and produce equally accurate predictive models whether using data only from pediatric patients or combined data from both children and adults. Results from regression-based methods were improved by the use of pediatric-specific data.

CONCLUSIONS

CDS tools for children can successfully use combined data from adults and children if the model accounts for underlying heterogeneity, as in machine learning models.

摘要

背景

使用成人数据构建的临床决策支持 (CDS) 工具通常不适用于儿童。我们探讨了如何最好地利用成人数据来提高此类工具的性能。本研究评估了使用儿童自己的数据为儿童构建 CDS 工具,还是使用成人和儿童的综合数据来构建此类工具,哪种方法效果更好。

方法

这是一项回顾性队列研究,使用了 2017 年至 2020 年的数据。参与者包括在一家提供成人和儿科服务的大型学术医疗中心接受择期手术的所有个体(成人和儿童)。我们预测他们是否需要机械通气或入住重症监护病房 (ICU)。预测变量包括手术前已知的人口统计学、临床和服务利用因素。我们比较了使用机器学习构建的预测模型和使用儿科或综合成人儿科队列的基于回归的方法。我们根据接收者操作特征曲线下的面积来比较模型性能。

结果

尽管我们发现成人和儿童的风险因素不同,但机器学习方法能够适当地对每个群体的潜在异质性进行建模,并生成同样准确的预测模型,无论是仅使用儿科患者的数据还是使用成人和儿童的综合数据。基于回归的方法的结果通过使用儿科特定数据得到了改善。

结论

如果模型能够考虑到潜在的异质性,就像在机器学习模型中一样,那么为儿童设计的 CDS 工具可以成功地使用成人和儿童的综合数据。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/198d/8961912/81124db3ca2e/12911_2022_1827_Fig1_HTML.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验