Departments of Pediatrics.
Medicine.
Hosp Pediatr. 2023 May 1;13(5):357-369. doi: 10.1542/hpeds.2022-006861.
Identifying children at high risk with complex health needs (CCHN) who have intersecting medical and social needs is challenging. This study's objectives were to (1) develop and evaluate an electronic health record (EHR)-based clinical predictive model ("model") for identifying high-risk CCHN and (2) compare the model's performance as a clinical decision support (CDS) to other CDS tools available for identifying high-risk CCHN.
This retrospective cohort study included children aged 0 to 20 years with established care within a single health system. The model development/validation cohort included 33 months (January 1, 2016-September 30, 2018) and the testing cohort included 18 months (October 1, 2018-March 31, 2020) of EHR data. Machine learning methods generated a model that predicted probability (0%-100%) for hospitalization within 6 months. Model performance measures included sensitivity, positive predictive value, area under receiver-operator curve, and area under precision-recall curve. Three CDS rules for identifying high-risk CCHN were compared: (1) hospitalization probability ≥10% (model-predicted); (2) complex chronic disease classification (using Pediatric Medical Complexity Algorithm [PMCA]); and (3) previous high hospital utilization.
Model development and testing cohorts included 116 799 and 27 087 patients, respectively. The model demonstrated area under receiver-operator curve = 0.79 and area under precision-recall curve = 0.13. PMCA had the highest sensitivity (52.4%) and classified the most children as high risk (17.3%). Positive predictive value of the model-based CDS rule (19%) was higher than CDS based on the PMCA (1.9%) and previous hospital utilization (15%).
A novel EHR-based predictive model was developed and validated as a population-level CDS tool for identifying CCHN at high risk for future hospitalization.
识别患有复杂健康需求(CCHN)且具有医疗和社会需求交叉的儿童具有挑战性。本研究的目的是:(1)开发和评估一种基于电子健康记录(EHR)的临床预测模型(“模型”),用于识别高风险的 CCHN;(2)比较该模型作为临床决策支持(CDS)的性能与其他用于识别高风险 CCHN 的 CDS 工具。
本回顾性队列研究纳入了在单一医疗系统内建立护理关系的 0 至 20 岁儿童。模型开发/验证队列纳入了 33 个月(2016 年 1 月 1 日至 2018 年 9 月 30 日)的数据,测试队列纳入了 18 个月(2018 年 10 月 1 日至 2020 年 3 月 31 日)的 EHR 数据。机器学习方法生成了一个预测 6 个月内住院概率(0%-100%)的模型。模型性能指标包括敏感性、阳性预测值、接收者操作特征曲线下面积和精准召回曲线下面积。比较了三种用于识别高风险 CCHN 的 CDS 规则:(1)住院概率≥10%(模型预测);(2)复杂慢性疾病分类(使用儿科医疗复杂性算法[PMCA]);(3)既往高住院利用率。
模型开发和测试队列分别纳入了 116799 名和 27087 名患者。该模型的接收者操作特征曲线下面积为 0.79,精准召回曲线下面积为 0.13。PMCA 的敏感性最高(52.4%),将最多的儿童分类为高风险(17.3%)。基于模型的 CDS 规则(19%)的阳性预测值高于基于 PMCA(1.9%)和既往住院利用率(15%)的 CDS。
开发并验证了一种新颖的基于 EHR 的预测模型,作为一种用于识别未来住院高风险 CCHN 的人群水平 CDS 工具。