Ariga Katsuhiko
World Premier International (WPI) Research Center for Materials Nanoarchitectonics (MANA), National Institute for Materials Science (NIMS), 1-1 Namiki, Tsukuba, 305-0044, Japan.
Department of Advanced Materials Science, Graduate School of Frontier Sciences, The University of Tokyo, Kashiwa, Chiba, 277-8561, Japan.
Small Methods. 2022 May;6(5):e2101577. doi: 10.1002/smtd.202101577. Epub 2022 Mar 29.
Mechanical stimuli have rather ambiguous and less-specific features among various physical stimuli, but most materials exhibit a certain level of responses upon mechanical inputs. Unexplored sciences remain in mechanical responding systems as one of the frontiers of materials science. Nanoarchitectonics approaches for mechanically responding materials are discussed as mechano-nanoarchitectonics in this review article. Recent approaches on molecular and materials systems with mechanical response capabilities are first exemplified with two viewpoints: i) mechanical control of supramolecular assemblies and materials and ii) mechanical control and evaluation of atom/molecular level structures. In the following sections, special attentions on interfacial environments for mechano-nanoarchitectonics are emphasized. The section entitled iii) Mechanical Control of Molecular System at Dynamic Interface describes coupling of macroscopic mechanical forces and molecular-level phenomena. Delicate mechanical forces can be applied to functional molecules embedded at the air-water interface where operation of molecular machines and tuning of molecular receptors upon macroscopic mechanical actions are discussed. Finally, the important role of the interfacial media are further extended to the control of living cells as described in the section entitled iv) Mechanical Control of Biosystems. Pioneering approaches on cell fate regulations at liquid-liquid interfaces are discussed in addition to well-known mechanobiology.
在各种物理刺激中,机械刺激具有相当模糊且特异性较低的特征,但大多数材料在受到机械输入时会表现出一定程度的响应。未被探索的科学领域存在于机械响应系统中,这是材料科学的前沿领域之一。在这篇综述文章中,将用于机械响应材料的纳米结构方法作为机械纳米结构进行了讨论。具有机械响应能力的分子和材料系统的最新方法首先从两个观点进行了举例说明:i)超分子组装体和材料的机械控制,以及ii)原子/分子水平结构的机械控制和评估。在接下来的部分中,重点强调了对机械纳米结构界面环境的特别关注。标题为iii)动态界面处分子系统的机械控制的部分描述了宏观机械力与分子水平现象的耦合。可以将微妙的机械力施加到嵌入气-水界面的功能分子上,在此讨论分子机器的操作以及宏观机械作用下分子受体的调节。最后,界面介质的重要作用进一步扩展到对活细胞的控制,如标题为iv)生物系统的机械控制的部分所述。除了著名的力学生物学之外,还讨论了液-液界面处细胞命运调控的开创性方法。