Deshmukh Sanchit, Rojo Miguel Muñoz, Yalon Eilam, Vaziri Sam, Koroglu Cagil, Islam Raisul, Iglesias Ricardo A, Saraswat Krishna, Pop Eric
Department of Electrical Engineering, Stanford University, Stanford, CA 94305, USA.
Instituto de Micro y Nanotecnología, IMN-CNM, CSIC (CEI UAM+CSIC), Madrid, Spain.
Sci Adv. 2022 Apr;8(13):eabk1514. doi: 10.1126/sciadv.abk1514. Epub 2022 Mar 30.
Resistive random access memory (RRAM) is an important candidate for both digital, high-density data storage and for analog, neuromorphic computing. RRAM operation relies on the formation and rupture of nanoscale conductive filaments that carry enormous current densities and whose behavior lies at the heart of this technology. Here, we directly measure the temperature of these filaments in realistic RRAM with nanoscale resolution using scanning thermal microscopy. We use both conventional metal and ultrathin graphene electrodes, which enable the most thermally intimate measurement to date. Filaments can reach 1300°C during steady-state operation, but electrode temperatures seldom exceed 350°C because of thermal interface resistance. These results reveal the importance of thermal engineering for nanoscale RRAM toward ultradense data storage or neuromorphic operation.
电阻式随机存取存储器(RRAM)是数字高密度数据存储和模拟神经形态计算的重要候选者。RRAM操作依赖于纳米级导电细丝的形成和断裂,这些细丝承载着巨大的电流密度,其行为是这项技术的核心。在这里,我们使用扫描热显微镜以纳米级分辨率直接测量实际RRAM中这些细丝的温度。我们使用传统金属电极和超薄石墨烯电极,这使得迄今为止能够进行最紧密的热测量。在稳态操作期间,细丝温度可达到1300°C,但由于热界面电阻,电极温度很少超过350°C。这些结果揭示了热工程对于用于超密集数据存储或神经形态操作的纳米级RRAM的重要性。