Department of Cell and Developmental Biology, Vanderbilt University School of Medicine, Nashville, TN, USA.
Institute of Pharmaceutical Chemistry, Goethe University, Frankfurt am Main, Germany; Structural Genomics Consortium, BMLS, Frankfurt am Main, Germany.
Mol Cell. 2022 Jun 2;82(11):2006-2020.e8. doi: 10.1016/j.molcel.2022.03.005. Epub 2022 Mar 29.
CK1s are acidophilic serine/threonine kinases with multiple critical cellular functions; their misregulation contributes to cancer, neurodegenerative diseases, and sleep phase disorders. Here, we describe an evolutionarily conserved mechanism of CK1 activity: autophosphorylation of a threonine (T220 in human CK1δ) located at the N terminus of helix αG, proximal to the substrate binding cleft. Crystal structures and molecular dynamics simulations uncovered inherent plasticity in αG that increased upon T220 autophosphorylation. The phosphorylation-induced structural changes significantly altered the conformation of the substrate binding cleft, affecting substrate specificity. In T220 phosphorylated yeast and human CK1s, activity toward many substrates was decreased, but we also identified a high-affinity substrate that was phosphorylated more rapidly, and quantitative phosphoproteomics revealed that disrupting T220 autophosphorylation rewired CK1 signaling in Schizosaccharomyces pombe. T220 is present exclusively in the CK1 family, thus its autophosphorylation may have evolved as a unique regulatory mechanism for this important family.
CK1s 是具有多种关键细胞功能的酸性丝氨酸/苏氨酸激酶;它们的失调会导致癌症、神经退行性疾病和睡眠阶段障碍。在这里,我们描述了 CK1 活性的一种进化保守机制:位于螺旋 αG 的 N 端、靠近底物结合裂隙的苏氨酸(人 CK1δ 中的 T220)的自身磷酸化。晶体结构和分子动力学模拟揭示了 αG 固有的可塑性,这种可塑性在 T220 自身磷酸化时增加。磷酸化诱导的结构变化显著改变了底物结合裂隙的构象,影响了底物特异性。在 T220 磷酸化的酵母和人 CK1 中,许多底物的活性降低,但我们也鉴定出一种具有更高亲和力的底物,其磷酸化速度更快,定量磷酸蛋白质组学揭示了破坏 T220 自身磷酸化会重新布线裂殖酵母中的 CK1 信号。T220 仅存在于 CK1 家族中,因此其自身磷酸化可能是这个重要家族的独特调节机制。