Department of Molecular Biology, University of Texas Southwestern Medical Center, Dallas, TX 75390-9148, USA.
Lyda Hill-Department of Bioinformatics, University of Texas Southwestern Medical Center, Dallas, TX 75390-9365, USA.
Cell Rep. 2022 Mar 29;38(13):110597. doi: 10.1016/j.celrep.2022.110597.
Although features of ribosome assembly are shared between species, our understanding of the diversity, complexity, dynamics, and regulation of ribosome production in multicellular organisms remains incomplete. To gain insights into ribosome biogenesis in human cells, we perform a genome-wide loss-of-function screen combined with differential labeling of pre-existing and newly assembled ribosomes. These efforts identify two functionally uncharacterized genes, C1orf109 and SPATA5. We provide evidence that these factors, together with CINP and SPATA5L1, control a late step of human pre-60S maturation in the cytoplasm. Loss of either C1orf109 or SPATA5 impairs global protein synthesis. These results link ribosome assembly with neurodevelopmental disorders associated with recessive SPATA5 mutations. Based on these findings, we propose that the expanded repertoire of ribosome biogenesis factors likely enables multicellular organisms to coordinate multiple steps of ribosome production in response to different developmental and environmental stimuli.
尽管核糖体组装的特征在物种间是共享的,但我们对多细胞生物中核糖体产生的多样性、复杂性、动态性和调控的理解仍不完整。为了深入了解人类细胞中的核糖体生物发生,我们进行了全基因组功能丧失筛选,并结合了预先存在的和新组装的核糖体的差异标记。这些努力确定了两个功能尚未确定的基因,C1orf109 和 SPATA5。我们提供的证据表明,这些因素与 CINP 和 SPATA5L1 一起,控制着人类细胞质中前 60S 成熟的晚期步骤。C1orf109 或 SPATA5 的缺失都会损害全球蛋白质合成。这些结果将核糖体组装与与隐性 SPATA5 突变相关的神经发育障碍联系起来。基于这些发现,我们提出,核糖体生物发生因子的扩展谱可能使多细胞生物能够协调核糖体产生的多个步骤,以响应不同的发育和环境刺激。