Suppr超能文献

利用智能手表通过腕部光体积描记脉搏波监测记录时长和其他心律失常对心房颤动检测的影响。

Impact of recording length and other arrhythmias on atrial fibrillation detection from wrist photoplethysmogram using smartwatches.

机构信息

Division of Cardiology, Department of Internal Medicine, National Taiwan University Hospital Hsinchu Branch, Hsinchu, Taiwan.

Department of Medicine, College of Medicine, National Taiwan University, Taipei, Taiwan.

出版信息

Sci Rep. 2022 Mar 30;12(1):5364. doi: 10.1038/s41598-022-09181-1.

Abstract

This study aimed to evaluate whether quantitative analysis of wrist photoplethysmography (PPG) could detect atrial fibrillation (AF). Continuous electrocardiograms recorded using an electrophysiology recording system and PPG obtained using a wrist-worn smartwatch were simultaneously collected from patients undergoing catheter ablation or electrical cardioversion. PPG features were extracted from 10, 25, 40, and 80 heartbeats of the split segments. Machine learning with a support vector machine and random forest approach were used to detect AF. A total of 116 patients were evaluated. We annotated > 117 h of PPG. A total of 6475 and 3957 segments of 25-beat pulse-to-pulse intervals (PPIs) were annotated as AF and sinus rhythm, respectively. The accuracy of the 25 PPIs yielded a test area under the receiver operating characteristic curve (AUC) of 0.9676, which was significantly better than the AUC for the 10 PPIs (0.9453; P < .001). PPGs obtained from another 38 patients with frequent premature ventricular/atrial complexes (PVCs/PACs) were used to evaluate the impact of other arrhythmias on diagnostic accuracy. The new AF detection algorithm achieved an AUC of 0.9680. The appropriate data length of PPG for optimizing the PPG analytics program was 25 heartbeats. Algorithm modification using a machine learning approach shows robustness to PVCs/PACs.

摘要

本研究旨在评估腕部光体积描记法(PPG)的定量分析是否可用于检测心房颤动(AF)。对接受导管消融或电复律的患者同时采集使用电生理记录系统记录的连续心电图和使用腕戴式智能手表获得的 PPG。从分段的 10、25、40 和 80 个心跳中提取 PPG 特征。使用支持向量机和随机森林方法进行机器学习以检测 AF。共评估了 116 名患者。我们对超过 117 小时的 PPG 进行了注释。总共注释了 25 个心跳脉搏到脉搏间隔(PPIs)的 6475 和 3957 个片段为 AF 和窦性心律。25 个 PPI 的准确性产生的测试受试者工作特征曲线(ROC)下面积(AUC)为 0.9676,明显优于 10 个 PPI 的 AUC(0.9453;P<.001)。使用另 38 名频发室性/房性早搏(PVCs/PACs)患者的 PPG 来评估其他心律失常对诊断准确性的影响。新的 AF 检测算法的 AUC 为 0.9680。优化 PPG 分析程序的 PPG 适当数据长度为 25 个心跳。使用机器学习方法进行算法修改显示对 PVCs/PACs 具有稳健性。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/cf2d/8967835/c9bfecaa62c3/41598_2022_9181_Fig1_HTML.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验