Suppr超能文献

用于组织中细胞分割与分析的用户可访问机器学习方法

User-Accessible Machine Learning Approaches for Cell Segmentation and Analysis in Tissue.

作者信息

Winfree Seth

机构信息

Department of Pathology and Microbiology, University of Nebraska Medical Center, Omaha, NE, United States.

出版信息

Front Physiol. 2022 Mar 10;13:833333. doi: 10.3389/fphys.2022.833333. eCollection 2022.

Abstract

Advanced image analysis with machine and deep learning has improved cell segmentation and classification for novel insights into biological mechanisms. These approaches have been used for the analysis of cells , within tissue, and confirmed existing and uncovered new models of cellular microenvironments in human disease. This has been achieved by the development of both imaging modality specific and multimodal solutions for cellular segmentation, thus addressing the fundamental requirement for high quality and reproducible cell segmentation in images from immunofluorescence, immunohistochemistry and histological stains. The expansive landscape of cell types-from a variety of species, organs and cellular states-has required a concerted effort to build libraries of annotated cells for training data and novel solutions for leveraging annotations across imaging modalities and in some cases led to questioning the requirement for single cell demarcation all together. Unfortunately, bleeding-edge approaches are often confined to a few experts with the necessary domain knowledge. However, freely available, and open-source tools and libraries of trained machine learning models have been made accessible to researchers in the biomedical sciences as software pipelines, plugins for open-source and free desktop and web-based software solutions. The future holds exciting possibilities with expanding machine learning models for segmentation via the brute-force addition of new training data or the implementation of novel network architectures, the use of machine and deep learning in cell and neighborhood classification for uncovering cellular microenvironments, and the development of new strategies for the use of machine and deep learning in biomedical research.

摘要

借助机器学习和深度学习的先进图像分析技术,已改善了细胞分割和分类,从而为深入了解生物学机制带来了新见解。这些方法已用于组织内细胞的分析,并证实了人类疾病中细胞微环境的现有模型并发现了新模型。这是通过开发针对细胞分割的特定成像模态和多模态解决方案来实现的,从而满足了对免疫荧光、免疫组织化学和组织学染色图像中高质量且可重复的细胞分割的基本要求。细胞类型的广泛领域——来自各种物种、器官和细胞状态——需要共同努力来构建带注释细胞库作为训练数据,并开发跨成像模态利用注释的新解决方案,在某些情况下甚至引发了对单细胞划分必要性的质疑。不幸的是,前沿方法往往局限于少数具备必要领域知识的专家。不过,生物医学领域的研究人员可以通过软件管道、开源和免费桌面及基于网络的软件解决方案的插件,使用免费且开源的经过训练的机器学习模型工具和库。随着通过强力添加新训练数据或实施新型网络架构来扩展用于分割的机器学习模型、在细胞和邻域分类中使用机器学习和深度学习来揭示细胞微环境,以及开发在生物医学研究中使用机器学习和深度学习的新策略,未来充满了令人兴奋的可能性。

相似文献

6
7
A Deep Learning Pipeline for Nucleus Segmentation.一种用于细胞核分割的深度学习管道。
Cytometry A. 2020 Dec;97(12):1248-1264. doi: 10.1002/cyto.a.24257. Epub 2020 Nov 19.
8
Toolkits and Libraries for Deep Learning.深度学习的工具包和库。
J Digit Imaging. 2017 Aug;30(4):400-405. doi: 10.1007/s10278-017-9965-6.
9
NiftyNet: a deep-learning platform for medical imaging.NiftyNet:一个用于医学成像的深度学习平台。
Comput Methods Programs Biomed. 2018 May;158:113-122. doi: 10.1016/j.cmpb.2018.01.025. Epub 2018 Jan 31.
10
Artificial Intelligence and Cellular Segmentation in Tissue Microscopy Images.人工智能与组织切片图像中的细胞分割。
Am J Pathol. 2021 Oct;191(10):1693-1701. doi: 10.1016/j.ajpath.2021.05.022. Epub 2021 Jun 12.

引用本文的文献

2
Artificial intelligence and machine learning applications for cultured meat.用于培养肉的人工智能和机器学习应用。
Front Artif Intell. 2024 Sep 24;7:1424012. doi: 10.3389/frai.2024.1424012. eCollection 2024.
5
Software Tools for 2D Cell Segmentation.二维细胞分割的软件工具。
Cells. 2024 Feb 17;13(4):352. doi: 10.3390/cells13040352.

本文引用的文献

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验