Suppr超能文献

一种用于细胞核分割的深度学习管道。

A Deep Learning Pipeline for Nucleus Segmentation.

作者信息

Zaki George, Gudla Prabhakar R, Lee Kyunghun, Kim Justin, Ozbun Laurent, Shachar Sigal, Gadkari Manasi, Sun Jing, Fraser Iain D C, Franco Luis M, Misteli Tom, Pegoraro Gianluca

机构信息

Biomedical Informatics and Data Science Directorate, Frederick National Laboratory for Cancer Research (FNLCR), Frederick, Maryland, USA.

High-Throughput Imaging Facility (HiTIF), Center for Cancer Research (CCR), NCI/NIH, Bethesda, Maryland, USA.

出版信息

Cytometry A. 2020 Dec;97(12):1248-1264. doi: 10.1002/cyto.a.24257. Epub 2020 Nov 19.

Abstract

Deep learning is rapidly becoming the technique of choice for automated segmentation of nuclei in biological image analysis workflows. In order to evaluate the feasibility of training nuclear segmentation models on small, custom annotated image datasets that have been augmented, we have designed a computational pipeline to systematically compare different nuclear segmentation model architectures and model training strategies. Using this approach, we demonstrate that transfer learning and tuning of training parameters, such as the composition, size, and preprocessing of the training image dataset, can lead to robust nuclear segmentation models, which match, and often exceed, the performance of existing, off-the-shelf deep learning models pretrained on large image datasets. We envision a practical scenario where deep learning nuclear segmentation models trained in this way can be shared across a laboratory, facility, or institution, and continuously improved by training them on progressively larger and varied image datasets. Our work provides computational tools and a practical framework for deep learning-based biological image segmentation using small annotated image datasets. Published [2020]. This article is a U.S. Government work and is in the public domain in the USA.

摘要

深度学习正迅速成为生物图像分析工作流程中细胞核自动分割的首选技术。为了评估在经过扩充的小型自定义注释图像数据集上训练细胞核分割模型的可行性,我们设计了一个计算管道,以系统地比较不同的细胞核分割模型架构和模型训练策略。使用这种方法,我们证明了迁移学习和训练参数的调整,如训练图像数据集的组成、大小和预处理,可以产生强大的细胞核分割模型,这些模型能够匹配并常常超过在大型图像数据集上预训练的现有现成深度学习模型的性能。我们设想了一种实际场景,即通过这种方式训练的深度学习细胞核分割模型可以在实验室、机构或单位之间共享,并通过在越来越大且多样的图像数据集上进行训练来不断改进。我们的工作为使用小型注释图像数据集进行基于深度学习的生物图像分割提供了计算工具和实用框架。发表于[2020年]。本文是美国政府作品,在美国属于公共领域。

相似文献

1
A Deep Learning Pipeline for Nucleus Segmentation.
Cytometry A. 2020 Dec;97(12):1248-1264. doi: 10.1002/cyto.a.24257. Epub 2020 Nov 19.
4
Evaluation of Deep Learning Architectures for Complex Immunofluorescence Nuclear Image Segmentation.
IEEE Trans Med Imaging. 2021 Jul;40(7):1934-1949. doi: 10.1109/TMI.2021.3069558. Epub 2021 Jun 30.
5
Automatic image annotation for fluorescent cell nuclei segmentation.
PLoS One. 2021 Apr 16;16(4):e0250093. doi: 10.1371/journal.pone.0250093. eCollection 2021.
6
Brain tumor segmentation and detection in MRI using convolutional neural networks and VGG16.
Cancer Biomark. 2025 Mar;42(3):18758592241311184. doi: 10.1177/18758592241311184. Epub 2025 Apr 4.
7
NuKit: A deep learning platform for fast nucleus segmentation of histopathological images.
J Bioinform Comput Biol. 2023 Feb;21(1):2350002. doi: 10.1142/S0219720023500026. Epub 2023 Mar 11.
8
Construction and Validation of a General Medical Image Dataset for Pretraining.
J Imaging Inform Med. 2025 Apr;38(2):1051-1061. doi: 10.1007/s10278-024-01226-3. Epub 2024 Aug 15.
9
Generalizing Deep Learning for Medical Image Segmentation to Unseen Domains via Deep Stacked Transformation.
IEEE Trans Med Imaging. 2020 Jul;39(7):2531-2540. doi: 10.1109/TMI.2020.2973595. Epub 2020 Feb 12.
10
An annotated fluorescence image dataset for training nuclear segmentation methods.
Sci Data. 2020 Aug 11;7(1):262. doi: 10.1038/s41597-020-00608-w.

引用本文的文献

2
Segmentation of Variants of Nuclei on Whole Slide Images by Using Radiomic Features.
Bioengineering (Basel). 2024 Mar 4;11(3):252. doi: 10.3390/bioengineering11030252.
3
Must-have Qualities of Clinical Research on Artificial Intelligence and Machine Learning.
Balkan Med J. 2023 Jan 23;40(1):3-12. doi: 10.4274/balkanmedj.galenos.2022.2022-11-51. Epub 2022 Dec 29.
4
Scellseg: A style-aware deep learning tool for adaptive cell instance segmentation by contrastive fine-tuning.
iScience. 2022 Nov 4;25(12):105506. doi: 10.1016/j.isci.2022.105506. eCollection 2022 Dec 22.
5
Benchmarking of deep learning algorithms for 3D instance segmentation of confocal image datasets.
PLoS Comput Biol. 2022 Apr 14;18(4):e1009879. doi: 10.1371/journal.pcbi.1009879. eCollection 2022 Apr.
6
Towards a better understanding of annotation tools for medical imaging: a survey.
Multimed Tools Appl. 2022;81(18):25877-25911. doi: 10.1007/s11042-022-12100-1. Epub 2022 Mar 25.
7
Digital Image Analysis Tools Developed by the Indiana O'Brien Center.
Front Physiol. 2021 Dec 16;12:812170. doi: 10.3389/fphys.2021.812170. eCollection 2021.

本文引用的文献

1
Cellpose: a generalist algorithm for cellular segmentation.
Nat Methods. 2021 Jan;18(1):100-106. doi: 10.1038/s41592-020-01018-x. Epub 2020 Dec 14.
2
Nucleus segmentation across imaging experiments: the 2018 Data Science Bowl.
Nat Methods. 2019 Dec;16(12):1247-1253. doi: 10.1038/s41592-019-0612-7. Epub 2019 Oct 21.
3
Evaluation of Deep Learning Strategies for Nucleus Segmentation in Fluorescence Images.
Cytometry A. 2019 Sep;95(9):952-965. doi: 10.1002/cyto.a.23863. Epub 2019 Jul 16.
4
Multi-Institutional Deep Learning Modeling Without Sharing Patient Data: A Feasibility Study on Brain Tumor Segmentation.
Brainlesion. 2019;11383:92-104. doi: 10.1007/978-3-030-11723-8_9. Epub 2019 Jan 26.
5
Deep learning for cellular image analysis.
Nat Methods. 2019 Dec;16(12):1233-1246. doi: 10.1038/s41592-019-0403-1. Epub 2019 May 27.
6
U-Net: deep learning for cell counting, detection, and morphometry.
Nat Methods. 2019 Jan;16(1):67-70. doi: 10.1038/s41592-018-0261-2. Epub 2018 Dec 17.
8
Mask R-CNN.
IEEE Trans Pattern Anal Mach Intell. 2020 Feb;42(2):386-397. doi: 10.1109/TPAMI.2018.2844175. Epub 2018 Jun 5.
9
Opportunities and obstacles for deep learning in biology and medicine.
J R Soc Interface. 2018 Apr;15(141). doi: 10.1098/rsif.2017.0387.
10
Automated Training of Deep Convolutional Neural Networks for Cell Segmentation.
Sci Rep. 2017 Aug 10;7(1):7860. doi: 10.1038/s41598-017-07599-6.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验