Seow Kathryn N, Seow Chun Y
Faculty of Land and Food Systems, University of British Columbia, Vancouver, BC, Canada.
Department of Pathology and Laboratory Medicine, University of British Columbia, Vancouver, BC, Canada.
Front Physiol. 2022 Mar 10;13:846284. doi: 10.3389/fphys.2022.846284. eCollection 2022.
Muscles convert chemical energy to mechanical work. Mechanical performance of a muscle is often assessed by the muscle's ability to shorten and generate power over a range of loads or forces, characterized by the force-velocity and force-power relationships. The hyperbolic force-velocity relationship of muscle, for a long time, has been regarded as a pure empirical description of the force-velocity data. Connections between mechanical manifestation in terms of force-velocity properties and the kinetics of the crossbridge cycle have only been established recently. In this review, we describe how the model of Huxley's crossbridge kinetics can be transformed to the hyperbolic Hill equation, and link the changes in force-velocity properties to molecular events within the crossbridge cycle driven by ATP hydrolysis. This allows us to reinterpret some findings from previous studies on experimental interventions that altered the force-velocity relationship and gain further insight into the molecular mechanisms of muscle contraction under physiological and pathophysiological conditions.
肌肉将化学能转化为机械功。肌肉的机械性能通常通过肌肉在一系列负荷或力的作用下缩短并产生力量的能力来评估,其特征为力-速度关系和力-功率关系。长期以来,肌肉的双曲线力-速度关系一直被视为力-速度数据的纯粹经验性描述。直到最近,才建立了力-速度特性方面的机械表现与横桥循环动力学之间的联系。在这篇综述中,我们描述了赫胥黎横桥动力学模型如何转化为双曲线希尔方程,并将力-速度特性的变化与由ATP水解驱动的横桥循环中的分子事件联系起来。这使我们能够重新解释先前关于改变力-速度关系的实验干预研究中的一些发现,并进一步深入了解生理和病理生理条件下肌肉收缩的分子机制。