Lacroix Adeline, Harquel Sylvain, Mermillod Martial, Vercueil Laurent, Alleysson David, Dutheil Frédéric, Kovarski Klara, Gomot Marie
Univ. Grenoble Alpes, Univ. Savoie Mont Blanc, CNRS, LPNC, Grenoble, France.
Defitech Chair in Clinical Neuroengineering, Center for Neuroprosthetics and Brain Mind Institute, EPFL, Geneva, Switzerland.
Front Hum Neurosci. 2022 Mar 11;16:838454. doi: 10.3389/fnhum.2022.838454. eCollection 2022.
Visual processing is thought to function in a coarse-to-fine manner. Low spatial frequencies (LSF), conveying coarse information, would be processed early to generate predictions. These LSF-based predictions would facilitate the further integration of high spatial frequencies (HSF), conveying fine details. The predictive role of LSF might be crucial in automatic face processing, where high performance could be explained by an accurate selection of clues in early processing. In the present study, we used a visual Mismatch Negativity (vMMN) paradigm by presenting an unfiltered face as standard stimulus, and the same face filtered in LSF or HSF as deviant, to investigate the predictive role of LSF vs. HSF during automatic face processing. If LSF are critical for predictions, we hypothesize that LSF deviants would elicit less prediction error (i.e., reduced mismatch responses) than HSF deviants. Results show that both LSF and HSF deviants elicited a mismatch response compared with their equivalent in an equiprobable sequence. However, in line with our hypothesis, LSF deviants evoke significantly reduced mismatch responses compared to HSF deviants, particularly at later stages. The difference in mismatch between HSF and LSF conditions involves posterior areas and right fusiform gyrus. Overall, our findings suggest a predictive role of LSF during automatic face processing and a critical involvement of HSF in the fusiform during the conscious detection of changes in faces.
视觉处理被认为是以从粗略到精细的方式进行运作的。低空间频率(LSF)传达粗略信息,会被早期处理以生成预测。这些基于低空间频率的预测将促进高空间频率(HSF)的进一步整合,高空间频率传达精细细节。低空间频率的预测作用在自动面部处理中可能至关重要,在自动面部处理中,高性能可以通过早期处理中线索的准确选择来解释。在本研究中,我们使用了视觉失配负波(vMMN)范式,通过呈现未经滤波的面部作为标准刺激,以及经过低空间频率或高空间频率滤波的同一张面部作为偏差刺激,来研究低空间频率与高空间频率在自动面部处理过程中的预测作用。如果低空间频率对预测至关重要,我们假设低空间频率偏差刺激比高空间频率偏差刺激引发的预测误差更小(即失配反应减少)。结果表明,与等概率序列中的等效刺激相比,低空间频率和高空间频率偏差刺激均引发了失配反应。然而,与我们的假设一致,与高空间频率偏差刺激相比,低空间频率偏差刺激引发的失配反应显著减少,尤其是在后期阶段。高空间频率和低空间频率条件下失配的差异涉及后部区域和右侧梭状回。总体而言,我们的研究结果表明低空间频率在自动面部处理过程中具有预测作用,而高空间频率在有意识地检测面部变化过程中对梭状回有重要影响。