Suppr超能文献

利用虚拟零售商店中的消费者行为模式识别个性特征

Recognizing Personality Traits Using Consumer Behavior Patterns in a Virtual Retail Store.

作者信息

Khatri Jaikishan, Marín-Morales Javier, Moghaddasi Masoud, Guixeres Jaime, Giglioli Irene Alice Chicchi, Alcañiz Mariano

机构信息

Instituto de Investigación e Innovación en Bioingeniería (i3B), Universitat Politécnica de Valencia, Valencia, Spain.

出版信息

Front Psychol. 2022 Mar 11;13:752073. doi: 10.3389/fpsyg.2022.752073. eCollection 2022.

Abstract

Virtual reality (VR) is a useful tool to study consumer behavior while they are immersed in a realistic scenario. Among several other factors, personality traits have been shown to have a substantial influence on purchasing behavior. The primary objective of this study was to classify consumers based on the Big Five personality domains using their behavior while performing different tasks in a virtual shop. The personality recognition was ascertained using behavioral measures received from VR hardware, including eye-tracking, navigation, posture and interaction. Responses from 60 participants were collected while performing free and directed search tasks in a virtual hypermarket. A set of behavioral features was processed, and the personality domains were recognized using a statistical supervised machine learning classifier algorithm a support vector machine. The results suggest that the open-mindedness personality type can be classified using eye gaze patterns, while extraversion is related to posture and interactions. However, a combination of signals must be exhibited to detect conscientiousness and negative emotionality. The combination of all measures and tasks provides better classification accuracy for all personality domains. The study indicates that a consumer's personality can be recognized using the behavioral sensors included in commercial VR devices during a purchase in a virtual retail store.

摘要

虚拟现实(VR)是一种在消费者沉浸于现实场景时研究其消费行为的有用工具。在诸多其他因素中,人格特质已被证明对购买行为有重大影响。本研究的主要目的是根据大五人格领域,利用消费者在虚拟商店中执行不同任务时的行为对其进行分类。人格识别是通过从VR硬件获得的行为测量数据来确定的,这些数据包括眼动追踪、导航、姿势和互动。在虚拟超市中执行自由搜索和定向搜索任务时,收集了60名参与者的反应。处理了一组行为特征,并使用统计监督机器学习分类器算法——支持向量机来识别各个人格领域。结果表明,开放性人格类型可通过注视模式进行分类,而外向性与姿势和互动有关。然而,必须呈现信号组合才能检测出尽责性和负面情绪。所有测量和任务的组合为所有人格领域提供了更高的分类准确率。该研究表明,在虚拟零售店购物期间,可利用商用VR设备中包含的行为传感器识别消费者的人格。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/2335/8962833/7dfb8dbc6ee0/fpsyg-13-752073-g001.jpg

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验