Vargas Elena Parra, Carrasco-Ribelles Lucia Amalia, Marin-Morales Javier, Molina Carla Ayuso, Raya Mariano Alcañiz
Laboratory of Immersive Neurotechnologies (LabLENI) - Institute Human-Tech, Valencia, Spain.
Instituto universitario de investigación en atención primaria "Jordi Gol", Valencia, Spain.
Front Psychol. 2024 Jul 24;15:1342018. doi: 10.3389/fpsyg.2024.1342018. eCollection 2024.
Personality plays a crucial role in shaping an individual's interactions with the world. The Big Five personality traits are widely used frameworks that help describe people's psychological behaviours. These traits predict how individuals behave within an organizational setting.
In this article, we introduce a virtual reality (VR) strategy for relatively scoring an individual's personality to evaluate the feasibility of predicting personality traits from implicit measures captured from users interacting in VR simulations of different organizational situations. Specifically, eye-tracking and decision-making patterns were used to classify individuals according to their level in each of the Big Five dimensions using statistical machine learning (ML) methods. The virtual environment was designed using an evidence-centered design approach.
The dimensions were assessed using NEO-FFI inventory. A random forest ML model provided 83% accuracy in predicting agreeableness. A -nearest neighbour ML model provided 75%, 75%, and 77% accuracy in predicting openness, neuroticism, and conscientiousness, respectively. A support vector machine model provided 85% accuracy for predicting extraversion. These analyses indicated that the dimensions could be differentiated by eye-gaze patterns and behaviours during immersive VR.
Eye-tracking measures contributed more significantly to this differentiation than the behavioural metrics. Currently, we have obtained promising results with our group of participants, but to ensure the robustness and generalizability of our findings, it is imperative to replicate the study with a considerably larger sample. This study demonstrates the potential of VR and ML to recognize personality traits.
人格在塑造个体与世界的互动中起着至关重要的作用。大五人格特质是广泛使用的框架,有助于描述人们的心理行为。这些特质可以预测个体在组织环境中的行为方式。
在本文中,我们介绍一种用于相对评估个体人格的虚拟现实(VR)策略,以评估从用户在不同组织情境的VR模拟中交互所捕获的隐式测量来预测人格特质的可行性。具体而言,使用统计机器学习(ML)方法,通过眼动追踪和决策模式根据个体在大五维度中的水平对其进行分类。虚拟环境采用以证据为中心的设计方法进行设计。
使用NEO-FFI量表对这些维度进行评估。随机森林ML模型在预测宜人性方面的准确率为83%。k近邻ML模型在预测开放性、神经质和尽责性方面的准确率分别为75%、75%和77%。支持向量机模型在预测外向性方面的准确率为85%。这些分析表明,在沉浸式VR过程中,可以通过眼神注视模式和行为来区分这些维度。
与行为指标相比,眼动追踪测量对这种区分的贡献更为显著。目前,我们在参与者群体中取得了有希望的结果,但为了确保我们研究结果的稳健性和普遍性,必须用相当大的样本重复该研究。这项研究证明了VR和ML在识别个性特征方面的潜力。