Suppr超能文献

不确定性下使用截尾回归分析膳食脂肪与前列腺癌的关系

Dietary Fat and Prostate Cancer Relationship Using Trimmed Regression Under Uncertainty.

作者信息

Aslam Muhammad, Al-Marshadi Ali Hussein

机构信息

Department of Statistics, Faculty of Science, King Abdulaziz University, Jeddah, Saudi Arabia.

出版信息

Front Nutr. 2022 Mar 10;9:799375. doi: 10.3389/fnut.2022.799375. eCollection 2022.

Abstract

In this paper, a new trimmed regression model under the neutrosophic environment is introduced. The mathematical model of the new regression model along with its neutrosophic form is given. The methods to find the error sum of square and trended values are also given. The trimmed neutrosophic correlation is also introduced in the paper. The proposed trimmed regression is applied to prostate cancer. From the analysis, it is concluded that the proposed model provides the minimum error sum of square as compared to the existing regression model under neutrosophic statistics. It is found that the proposed model is quite effective to forecast prostate cancer patients under an indeterminacy setting.

摘要

本文介绍了一种在中智环境下的新型截尾回归模型。给出了新回归模型的数学模型及其中智形式。还给出了求平方误差和趋势值的方法。本文还引入了截尾中智相关性。将所提出的截尾回归应用于前列腺癌。通过分析得出,与中智统计下的现有回归模型相比,所提出的模型提供了最小的平方误差和。发现在不确定性环境下,所提出的模型对预测前列腺癌患者非常有效。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/d002/8961509/462253512256/fnut-09-799375-g0001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验