Lu Jian, Fu Hongkun, Tang Xuhui, Liu Zhao, Huang Jujian, Zou Wenlong, Chen Hui, Sun Yue, Ning Xiangyu, Li Jian
Institute of Smart Agriculture, Jilin Agricultural University, Changchun, 130118, People's Republic of China.
College of Agriculture, Jilin Agricultural University, Changchun, 130118, People's Republic of China.
Sci Rep. 2024 Mar 26;14(1):7097. doi: 10.1038/s41598-024-57278-6.
Accurately estimating large-area crop yields, especially for soybeans, is essential for addressing global food security challenges. This study introduces a deep learning framework that focuses on precise county-level soybean yield estimation in the United States. It utilizes a wide range of multi-variable remote sensing data. The model used in this study is a state-of-the-art CNN-BiGRU model, which is enhanced by the GOA and a novel attention mechanism (GCBA). This model excels in handling intricate time series and diverse remote sensing datasets. Compared to five leading machine learning and deep learning models, our GCBA model demonstrates superior performance, particularly in the 2019 and 2020 evaluations, achieving remarkable R, RMSE, MAE and MAPE values. This sets a new benchmark in yield estimation accuracy. Importantly, the study highlights the significance of integrating multi-source remote sensing data. It reveals that synthesizing information from various sensors and incorporating photosynthesis-related parameters significantly enhances yield estimation precision. These advancements not only provide transformative insights for precision agricultural management but also establish a solid scientific foundation for informed decision-making in global agricultural production and food security.
准确估算大面积农作物产量,尤其是大豆产量,对于应对全球粮食安全挑战至关重要。本研究引入了一个深度学习框架,该框架专注于美国县级大豆产量的精确估算。它利用了广泛的多变量遥感数据。本研究中使用的模型是一种先进的CNN-BiGRU模型,通过GOA和一种新颖的注意力机制(GCBA)进行了增强。该模型在处理复杂的时间序列和多样的遥感数据集方面表现出色。与五个领先的机器学习和深度学习模型相比,我们的GCBA模型表现出卓越的性能,特别是在2019年和2020年的评估中,取得了显著的R、RMSE、MAE和MAPE值。这在产量估算精度方面树立了新的标杆。重要的是,该研究强调了整合多源遥感数据的重要性。它表明,综合来自各种传感器的信息并纳入与光合作用相关的参数可显著提高产量估算精度。这些进展不仅为精准农业管理提供了变革性的见解,也为全球农业生产和粮食安全的明智决策奠定了坚实的科学基础。