Swiss ornithological institute, Sempach, Switzerland.
Centre for the Advanced Study of Collective Behavior, University of Konstanz, Constance, Germany.
J Anim Ecol. 2022 Jul;91(7):1345-1360. doi: 10.1111/1365-2656.13695. Epub 2022 Apr 22.
Light-level geolocators have revolutionised the study of animal behaviour. However, lacking spatial precision, their usage has been primary targeted towards the analysis of large-scale movements. Recent technological developments have allowed the integration of magnetometers and accelerometers into geolocator tags in addition to barometers and thermometers, offering new behavioural insights. Here, we introduce an R toolbox for identifying behavioural patterns from multisensor geolocator tags, with functions specifically designed for data visualisation, calibration, classification and error estimation. More specifically, the package allows for the flexible analysis of any combination of sensor data using k-means clustering, expectation maximisation binary clustering, hidden Markov models and changepoint analyses. Furthermore, the package integrates tailored algorithms for identifying periods of prolonged high activity (most commonly used for identifying migratory flapping flight), and pressure changes (most commonly used for identifying dive or flight events). Finally, we highlight some of the limitations, implications and opportunities of using these methods.
光感地理定位器已经彻底改变了动物行为研究。然而,由于缺乏空间精度,其应用主要集中在对大规模运动的分析上。最近的技术发展允许将磁力计和加速度计与地理定位器标签中的气压计和温度计结合使用,从而提供新的行为见解。在这里,我们介绍了一个用于从多传感器地理定位器标签中识别行为模式的 R 工具箱,其中的功能专门设计用于数据可视化、校准、分类和误差估计。更具体地说,该软件包允许使用 k-均值聚类、期望最大化二进制聚类、隐马尔可夫模型和变点分析灵活地分析任何传感器数据的组合。此外,该软件包还集成了用于识别长时间高活动期(最常用于识别迁徙性拍打飞行)和压力变化期(最常用于识别潜水或飞行事件)的定制算法。最后,我们强调了使用这些方法的一些限制、影响和机会。