Chen Edward H, Yoder Theodore J, Kim Youngseok, Sundaresan Neereja, Srinivasan Srikanth, Li Muyuan, Córcoles Antonio D, Cross Andrew W, Takita Maika
IBM Quantum, Almaden Research Center, San Jose, California 95120, USA.
IBM Quantum, T.J. Watson Research Center, Yorktown Heights, New York 10598, USA.
Phys Rev Lett. 2022 Mar 18;128(11):110504. doi: 10.1103/PhysRevLett.128.110504.
Arbitrarily long quantum computations require quantum memories that can be repeatedly measured without being corrupted. Here, we preserve the state of a quantum memory, notably with the additional use of flagged error events. All error events were extracted using fast, midcircuit measurements and resets of the physical qubits. Among the error decoders we considered, we introduce a perfect matching decoder that was calibrated from measurements containing up to size-four correlated events. To compare the decoders, we used a partial postselection scheme shown to retain ten times more data than full postselection. We observed logical errors per round of 2.2±0.1×10^{-2} (decoded without postselection) and 5.1±0.7×10^{-4} (full postselection), which was less than the physical measurement error of 7×10^{-3} and therefore surpasses a pseudothreshold for repeated logical measurements.
任意长的量子计算都需要能够被反复测量而不被破坏的量子存储器。在此,我们保存量子存储器的状态,特别是通过额外使用标记错误事件来实现。所有错误事件都是通过对物理量子比特进行快速的、电路中间测量和重置来提取的。在我们考虑的错误解码器中,我们引入了一种完美匹配解码器,它是根据包含大小达四个相关事件的测量进行校准的。为了比较这些解码器,我们使用了一种部分后选择方案,该方案显示保留的数据比完全后选择多十倍。我们观察到每轮的逻辑错误率为2.2±0.1×10⁻²(未进行后选择解码)和5.1±0.7×10⁻⁴(完全后选择),这低于7×10⁻³的物理测量误差,因此超过了重复逻辑测量的伪阈值。