Suppr超能文献

通过超导量子电路中的重复错误检测实现状态保持。

State preservation by repetitive error detection in a superconducting quantum circuit.

机构信息

Department of Physics, University of California, Santa Barbara, California 93106, USA.

1] Department of Physics, University of California, Santa Barbara, California 93106, USA [2] Centre for Quantum Computation and Communication Technology, School of Physics, The University of Melbourne, Victoria 3010, Australia.

出版信息

Nature. 2015 Mar 5;519(7541):66-9. doi: 10.1038/nature14270.

Abstract

Quantum computing becomes viable when a quantum state can be protected from environment-induced error. If quantum bits (qubits) are sufficiently reliable, errors are sparse and quantum error correction (QEC) is capable of identifying and correcting them. Adding more qubits improves the preservation of states by guaranteeing that increasingly larger clusters of errors will not cause logical failure-a key requirement for large-scale systems. Using QEC to extend the qubit lifetime remains one of the outstanding experimental challenges in quantum computing. Here we report the protection of classical states from environmental bit-flip errors and demonstrate the suppression of these errors with increasing system size. We use a linear array of nine qubits, which is a natural step towards the two-dimensional surface code QEC scheme, and track errors as they occur by repeatedly performing projective quantum non-demolition parity measurements. Relative to a single physical qubit, we reduce the failure rate in retrieving an input state by a factor of 2.7 when using five of our nine qubits and by a factor of 8.5 when using all nine qubits after eight cycles. Additionally, we tomographically verify preservation of the non-classical Greenberger-Horne-Zeilinger state. The successful suppression of environment-induced errors will motivate further research into the many challenges associated with building a large-scale superconducting quantum computer.

摘要

当量子态能够免受环境诱发错误的影响时,量子计算就变得可行了。如果量子位(qubit)足够可靠,错误就会稀疏,量子错误校正(QEC)能够识别和纠正它们。通过保证越来越大的错误簇不会导致逻辑故障,添加更多的量子位可以提高状态的保持能力,这是大规模系统的关键要求。使用 QEC 来延长量子位的寿命仍然是量子计算中未解决的实验挑战之一。在这里,我们报告了从环境位翻转错误中保护经典状态,并展示了随着系统规模的增加对这些错误的抑制。我们使用了一个由九个量子位组成的线性阵列,这是迈向二维表面码 QEC 方案的自然步骤,并通过反复进行投影量子非破坏奇偶测量来跟踪错误的发生。与单个物理量子位相比,当我们使用九个量子位中的五个时,在八个周期后使用所有九个量子位时,我们将检索输入状态的失败率降低了 2.7 倍,降低了 8.5 倍。此外,我们还对非经典 Greenberger-Horne-Zeilinger 态的保持进行了层析成像验证。成功抑制环境诱发的错误将激发对构建大规模超导量子计算机相关的许多挑战的进一步研究。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验