Krinner Sebastian, Lacroix Nathan, Remm Ants, Di Paolo Agustin, Genois Elie, Leroux Catherine, Hellings Christoph, Lazar Stefania, Swiadek Francois, Herrmann Johannes, Norris Graham J, Andersen Christian Kraglund, Müller Markus, Blais Alexandre, Eichler Christopher, Wallraff Andreas
Department of Physics, ETH Zurich, Zurich, Switzerland.
Institut Quantique, Université de Sherbrooke, Sherbrooke, Québec, Canada.
Nature. 2022 May;605(7911):669-674. doi: 10.1038/s41586-022-04566-8. Epub 2022 May 25.
Quantum computers hold the promise of solving computational problems that are intractable using conventional methods. For fault-tolerant operation, quantum computers must correct errors occurring owing to unavoidable decoherence and limited control accuracy. Here we demonstrate quantum error correction using the surface code, which is known for its exceptionally high tolerance to errors. Using 17 physical qubits in a superconducting circuit, we encode quantum information in a distance-three logical qubit, building on recent distance-two error-detection experiments. In an error-correction cycle taking only 1.1 μs, we demonstrate the preservation of four cardinal states of the logical qubit. Repeatedly executing the cycle, we measure and decode both bit-flip and phase-flip error syndromes using a minimum-weight perfect-matching algorithm in an error-model-free approach and apply corrections in post-processing. We find a low logical error probability of 3% per cycle when rejecting experimental runs in which leakage is detected. The measured characteristics of our device agree well with a numerical model. Our demonstration of repeated, fast and high-performance quantum error-correction cycles, together with recent advances in ion traps, support our understanding that fault-tolerant quantum computation will be practically realizable.
量子计算机有望解决使用传统方法难以处理的计算问题。为实现容错操作,量子计算机必须纠正由于不可避免的退相干和有限的控制精度而出现的错误。在此,我们展示了使用表面码进行量子纠错,表面码以其对错误具有极高的容忍度而闻名。利用超导电路中的17个物理量子比特,我们在近期的距离为二的错误检测实验基础上,将量子信息编码到一个距离为三的逻辑量子比特中。在仅需1.1微秒的纠错循环中,我们展示了逻辑量子比特的四个基本状态得以保留。反复执行该循环,我们采用无错误模型的方法,使用最小权重完美匹配算法测量和解码比特翻转和相位翻转错误症候群,并在后期处理中应用校正。当拒绝检测到有泄漏的实验运行时,我们发现每个循环的逻辑错误概率低至3%。我们器件的测量特性与数值模型吻合良好。我们对重复、快速且高性能的量子纠错循环的展示,以及离子阱方面的近期进展,都支持我们的一种认识,即容错量子计算将在实际中得以实现。