Suppr超能文献

基因表达是癌细胞中稳态代谢物丰度的一个较差预测因子。

Gene expression is a poor predictor of steady-state metabolite abundance in cancer cells.

机构信息

School of Biomedical Sciences, LKS Faculty of Medicine, the University of Hong Kong, Hong Kong SAR, China.

出版信息

FASEB J. 2022 May;36(5):e22296. doi: 10.1096/fj.202101921RR.

Abstract

Metabolic reprogramming is a hallmark of cancer characterized by global changes in metabolite levels. However, compared with the study of gene expression, profiling of metabolites in cancer samples remains relatively understudied. We obtained metabolomic profiling and gene expression data from 454 human solid cancer cell lines across 24 cancer types from the Cancer Cell Line Encyclopedia (CCLE) database, to evaluate the feasibility of inferring metabolite levels from gene expression data. For each metabolite, we trained multivariable LASSO regression models to identify gene sets that are most predictive of the level of each metabolite profiled. Even when accounting for cell culture conditions or cell lineage in the model, few metabolites could be accurately predicted. In some cases, the inclusion of the upstream and downstream metabolites improved prediction accuracy, suggesting that gene expression is a poor predictor of steady-state metabolite levels. Our analysis uncovered a single robust relationship between the expression of nicotinamide N-methyltransferase (NNMT) and 1-methylnicotinamide (MNA), however, this relationship could only be validated in cancer samples with high purity, as NNMT is not expressed in immune cells. Together, we have trained models that use gene expression profiles to predict the level of individual metabolites. Our analysis suggests that inferring metabolite levels based on the expression of genes is generally challenging in cancer.

摘要

代谢重编程是癌症的一个标志,其特征是代谢物水平的全局变化。然而,与基因表达的研究相比,癌症样本中代谢物的分析仍然相对较少。我们从癌症细胞系百科全书 (CCLE) 数据库中获取了 24 种癌症类型的 454 个人类实体癌细胞系的代谢组学分析和基因表达数据,以评估从基因表达数据推断代谢物水平的可行性。对于每种代谢物,我们训练了多变量 LASSO 回归模型,以确定最能预测所分析的每种代谢物水平的基因集。即使在模型中考虑细胞培养条件或细胞谱系,也很少有代谢物可以被准确预测。在某些情况下,包含上游和下游代谢物可以提高预测准确性,这表明基因表达是稳态代谢物水平的不良预测因子。我们的分析揭示了烟酰胺 N-甲基转移酶 (NNMT) 和 1-甲基烟酰胺 (MNA) 表达之间的单一稳健关系,然而,这种关系只能在高纯度的癌症样本中得到验证,因为 NNMT 不在免疫细胞中表达。总之,我们已经训练了使用基因表达谱来预测单个代谢物水平的模型。我们的分析表明,基于基因表达推断代谢物水平在癌症中通常具有挑战性。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验