Suppr超能文献

精神病学中的临床预测模型:二十年进展与挑战的系统回顾。

Clinical prediction models in psychiatry: a systematic review of two decades of progress and challenges.

机构信息

Department of Psychology, Institute of Psychiatry, Psychology & Neuroscience, King's College London, London, UK.

Social, Genetic and Developmental Psychiatry Centre, Institute of Psychiatry, Psychology & Neuroscience, King's College London, London, UK.

出版信息

Mol Psychiatry. 2022 Jun;27(6):2700-2708. doi: 10.1038/s41380-022-01528-4. Epub 2022 Apr 1.

Abstract

Recent years have seen the rapid proliferation of clinical prediction models aiming to support risk stratification and individualized care within psychiatry. Despite growing interest, attempts to synthesize current evidence in the nascent field of precision psychiatry have remained scarce. This systematic review therefore sought to summarize progress towards clinical implementation of prediction modeling for psychiatric outcomes. We searched MEDLINE, PubMed, Embase, and PsychINFO databases from inception to September 30, 2020, for English-language articles that developed and/or validated multivariable models to predict (at an individual level) onset, course, or treatment response for non-organic psychiatric disorders (PROSPERO: CRD42020216530). Individual prediction models were evaluated based on three key criteria: (i) mitigation of bias and overfitting; (ii) generalizability, and (iii) clinical utility. The Prediction model Risk Of Bias ASsessment Tool (PROBAST) was used to formally appraise each study's risk of bias. 228 studies detailing 308 prediction models were ultimately eligible for inclusion. 94.5% of developed prediction models were deemed to be at high risk of bias, largely due to inadequate or inappropriate analytic decisions. Insufficient internal validation efforts (within the development sample) were also observed, while only one-fifth of models underwent external validation in an independent sample. Finally, our search identified just one published model whose potential utility in clinical practice was formally assessed. Our findings illustrated significant growth in precision psychiatry with promising progress towards real-world application. Nevertheless, these efforts have been inhibited by a preponderance of bias and overfitting, while the generalizability and clinical utility of many published models has yet to be formally established. Through improved methodological rigor during initial development, robust evaluations of reproducibility via independent validation, and evidence-based implementation frameworks, future research has the potential to generate risk prediction tools capable of enhancing clinical decision-making in psychiatric care.

摘要

近年来,临床预测模型迅速发展,旨在支持精神病学中的风险分层和个体化护理。尽管人们越来越感兴趣,但在精准精神病学这一新兴领域中,综合当前证据的尝试仍然很少。因此,本系统综述旨在总结预测建模在精神科结果临床实施方面的进展。我们检索了 MEDLINE、PubMed、Embase 和 PsychINFO 数据库,从建库到 2020 年 9 月 30 日,以获取开发和/或验证多变量模型以预测(个体水平)非器质性精神障碍发病、病程或治疗反应的英文文章(PROSPERO:CRD42020216530)。个体预测模型根据三个关键标准进行评估:(i)减轻偏差和过拟合;(ii)可推广性;(iii)临床实用性。使用预测模型风险偏倚评估工具(PROBAST)正式评估每个研究的偏倚风险。最终有 228 项研究详细描述了 308 个预测模型符合纳入标准。94.5%的开发预测模型被认为存在高偏倚风险,主要是由于分析决策不当或不适当。还观察到内部验证工作(在开发样本中)不足,而只有五分之一的模型在独立样本中进行了外部验证。最后,我们的搜索仅确定了一个已发布的模型,其在临床实践中的潜在实用性已得到正式评估。我们的研究结果表明,精准精神病学取得了显著进展,朝着实际应用的方向取得了有希望的进展。然而,这些努力受到偏见和过拟合的阻碍,而许多已发布模型的可推广性和临床实用性尚未得到正式确立。通过在初始开发过程中提高方法学严谨性、通过独立验证进行可重复性的稳健评估以及基于证据的实施框架,未来的研究有可能生成能够增强精神科护理中临床决策的风险预测工具。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/6b4c/9156409/1c3f7a73ec62/41380_2022_1528_Fig1_HTML.jpg

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验