Suppr超能文献

精神病的预后预测:探索机器学习模型的互补作用。

Prognostic predictions in psychosis: exploring the complementary role of machine learning models.

作者信息

Dee Violet van, Kia Seyed M, Fregosi Caterina, Swildens Wilma E, Alkema Anne, Batalla Albert, van den Berg Coen, Coric Danko, van Dellen Edwin, Dijkstra Lotte G, van den Doel Arthur, Dominicus Livia S, Enterman John, Gerritse Frank L, van der Horst Marte Z, van Houwelingen Fedor, Koch Charlotte S, Koomen Lisanne E M, Kromkamp Marjan, Lancee Michelle, Mouthaan Brian E, van Rappard Diane F, Regeer Eline J, Salet Raymond W J, Somers Metten, Straalman Jorgen, de Vette Marjolein H T, Voogt Judith, Winter-van Rossum Inge, Kahn Rene S, Cahn Wiepke, Schnack Hugo G

机构信息

Psychiatry, University Medical Centre Utrecht Brain Centre, Utrecht, The Netherlands

Psychiatry, St Antonius Hospital, Utrecht, The Netherlands.

出版信息

BMJ Ment Health. 2025 Jun 26;28(1):e301594. doi: 10.1136/bmjment-2025-301594.

Abstract

BACKGROUND

Predicting outcomes in schizophrenia spectrum disorders is challenging due to the variability of individual trajectories. While machine learning (ML) shows promise in outcome prediction, it has not yet been integrated into clinical practice. Understanding how ML models (MLMs) can complement psychiatrists' predictions and bridge the gap between MLM capabilities and practical use is key.

OBJECTIVE

This vignette study aims to compare the performance of psychiatrists and MLMs in predicting short-term symptomatic and functional remission in patients with first-episode psychosis and explore whether MLMs can improve psychiatrists' prognostic accuracy.

METHOD

24 psychiatrists predicted symptomatic and functional remission probabilities at 10 weeks based on written baseline information from 66 patients in the OPtimization of Treatment and Management of Schizophrenia in Europe (OPTiMiSE) trial. ML-generated predictions based on these vignettes were then shared with psychiatrists, allowing them to adjust their estimates.

FINDINGS

The predictive accuracy of the MLM was low but comparable to that of psychiatrists for symptomatic remission (MLM: 0.50, psychiatrists: 0.52) and comparable to that of psychiatrists for functional remission (MLM: 0.72, psychiatrists: 0.79). Inter-rater agreement was low but comparable for psychiatrists and the MLM. Although the MLM did not improve overall predictive accuracy, it showed potential in aiding psychiatrists with difficult-to-predict cases. However, psychiatrists struggled to recognise when to rely on the model's output, and we were unable to determine a clear pattern in these cases based on their characteristics.

CONCLUSIONS

MLMs may have the potential to support psychiatric decision-making, particularly in difficult-to-predict cases, but at present, their effectiveness remains limited due to constraints in predictive accuracy and the ability to identify when to rely on the model's output. Addressing these issues is crucial to improve the utility of MLMs and foster their integration into clinical practice.

CLINICAL IMPLICATIONS

MLMs are best suited as supplementary tools, providing a second opinion while psychiatrists retain decision-making autonomy. Integrating predictions from both sources may help reduce individual biases and improve accuracy. This approach leverages the strengths of MLMs without compromising clinical responsibility.

摘要

背景

由于个体病程的变异性,预测精神分裂症谱系障碍的预后具有挑战性。虽然机器学习(ML)在预后预测方面显示出前景,但尚未整合到临床实践中。了解ML模型(MLMs)如何补充精神科医生的预测并弥合MLM能力与实际应用之间的差距是关键。

目的

本案例研究旨在比较精神科医生和MLMs在预测首发精神病患者短期症状缓解和功能缓解方面的表现,并探讨MLMs是否可以提高精神科医生的预后准确性。

方法

24名精神科医生根据欧洲精神分裂症治疗与管理优化(OPTiMiSE)试验中66名患者的书面基线信息,预测10周时的症状缓解和功能缓解概率。然后将基于这些案例的ML生成的预测结果分享给精神科医生,以便他们调整估计值。

结果

MLM的预测准确性较低,但在症状缓解方面与精神科医生相当(MLM:0.50,精神科医生:0.52),在功能缓解方面与精神科医生相当(MLM:0.72,精神科医生:0.79)。评分者间一致性较低,但精神科医生和MLM相当。虽然MLM没有提高总体预测准确性,但它在帮助精神科医生处理难以预测的病例方面显示出潜力。然而,精神科医生难以识别何时依赖模型的输出,并且我们无法根据这些病例的特征确定明确的模式。

结论

MLMs可能有潜力支持精神科决策,特别是在难以预测的病例中,但目前,由于预测准确性和识别何时依赖模型输出的能力的限制,它们的有效性仍然有限。解决这些问题对于提高MLMs的效用并促进其融入临床实践至关重要。

临床意义

MLMs最适合作为辅助工具,在精神科医生保留决策自主权的同时提供第二种意见。整合来自这两个来源的预测可能有助于减少个体偏差并提高准确性。这种方法利用了MLMs的优势,同时不损害临床责任。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/e99d/12207152/1722144b4db5/bmjment-28-1-g001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验