Suppr超能文献

机器学习在精神障碍遗传预测中的应用:系统综述。

Machine learning for genetic prediction of psychiatric disorders: a systematic review.

机构信息

MRC Centre for Neuropsychiatric Genetics and Genomics, Division of Psychological Medicine and Clinical Neurosciences, School of Medicine, Cardiff University, Cardiff, UK.

Dementia Research Institute, School of Medicine, Cardiff University, Cardiff, UK.

出版信息

Mol Psychiatry. 2021 Jan;26(1):70-79. doi: 10.1038/s41380-020-0825-2. Epub 2020 Jun 26.

Abstract

Machine learning methods have been employed to make predictions in psychiatry from genotypes, with the potential to bring improved prediction of outcomes in psychiatric genetics; however, their current performance is unclear. We aim to systematically review machine learning methods for predicting psychiatric disorders from genetics alone and evaluate their discrimination, bias and implementation. Medline, PsycInfo, Web of Science and Scopus were searched for terms relating to genetics, psychiatric disorders and machine learning, including neural networks, random forests, support vector machines and boosting, on 10 September 2019. Following PRISMA guidelines, articles were screened for inclusion independently by two authors, extracted, and assessed for risk of bias. Overall, 63 full texts were assessed from a pool of 652 abstracts. Data were extracted for 77 models of schizophrenia, bipolar, autism or anorexia across 13 studies. Performance of machine learning methods was highly varied (0.48-0.95 AUC) and differed between schizophrenia (0.54-0.95 AUC), bipolar (0.48-0.65 AUC), autism (0.52-0.81 AUC) and anorexia (0.62-0.69 AUC). This is likely due to the high risk of bias identified in the study designs and analysis for reported results. Choices for predictor selection, hyperparameter search and validation methodology, and viewing of the test set during training were common causes of high risk of bias in analysis. Key steps in model development and validation were frequently not performed or unreported. Comparison of discrimination across studies was constrained by heterogeneity of predictors, outcome and measurement, in addition to sample overlap within and across studies. Given widespread high risk of bias and the small number of studies identified, it is important to ensure established analysis methods are adopted. We emphasise best practices in methodology and reporting for improving future studies.

摘要

机器学习方法已被用于从基因型预测精神病学,有望改善精神病遗传学的结果预测;然而,其当前性能尚不清楚。我们旨在系统地综述仅从遗传学预测精神障碍的机器学习方法,并评估其鉴别力、偏差和实施情况。我们于 2019 年 9 月 10 日在 Medline、PsycInfo、Web of Science 和 Scopus 上搜索了与遗传学、精神障碍和机器学习相关的术语,包括神经网络、随机森林、支持向量机和提升法。根据 PRISMA 指南,两名作者独立筛选文章纳入、提取并评估偏倚风险。总体而言,从 652 篇摘要中评估了 63 篇全文。在 13 项研究中,对 77 个精神分裂症、双相情感障碍、自闭症或厌食症的模型进行了数据提取。机器学习方法的性能差异很大(0.48-0.95 AUC),且在精神分裂症(0.54-0.95 AUC)、双相情感障碍(0.48-0.65 AUC)、自闭症(0.52-0.81 AUC)和厌食症(0.62-0.69 AUC)之间存在差异。这可能是由于报告结果的研究设计和分析中存在高偏倚风险所致。预测因子选择、超参数搜索和验证方法以及训练过程中测试集的查看是分析中高偏倚风险的常见原因。模型开发和验证的关键步骤经常未执行或未报告。除了研究内和研究间样本重叠外,预测因子、结局和测量的异质性也限制了跨研究比较的鉴别力。鉴于广泛存在的高偏倚风险和确定的研究数量较少,确保采用既定的分析方法非常重要。我们强调了方法学和报告方面的最佳实践,以改善未来的研究。

相似文献

引用本文的文献

1
Machine learning in Alzheimer's disease genetics.阿尔茨海默病遗传学中的机器学习
Nat Commun. 2025 Jul 22;16(1):6726. doi: 10.1038/s41467-025-61650-z.

本文引用的文献

2
Machine learning algorithm validation with a limited sample size.机器学习算法在有限样本量下的验证。
PLoS One. 2019 Nov 7;14(11):e0224365. doi: 10.1371/journal.pone.0224365. eCollection 2019.
3
Machine learning in psychiatry- standards and guidelines.精神病学中的机器学习——标准与指南。
Asian J Psychiatr. 2019 Aug;44:A1-A4. doi: 10.1016/j.ajp.2019.09.009. Epub 2019 Sep 10.
5
Reporting of artificial intelligence prediction models.人工智能预测模型的报告。
Lancet. 2019 Apr 20;393(10181):1577-1579. doi: 10.1016/S0140-6736(19)30037-6.
6
Machine Learning SNP Based Prediction for Precision Medicine.基于机器学习单核苷酸多态性的精准医学预测
Front Genet. 2019 Mar 27;10:267. doi: 10.3389/fgene.2019.00267. eCollection 2019.
9
Deep neural networks in psychiatry.精神病学中的深度神经网络。
Mol Psychiatry. 2019 Nov;24(11):1583-1598. doi: 10.1038/s41380-019-0365-9. Epub 2019 Feb 15.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验