Suppr超能文献

2012 - 2020年中东呼吸综合征冠状病毒生态学:机器学习建模分析

Ecology of Middle East respiratory syndrome coronavirus, 2012-2020: A machine learning modelling analysis.

作者信息

Zhang An-Ran, Li Xin-Lou, Wang Tao, Liu Kun, Liu Ming-Jin, Zhang Wen-Hui, Zhao Guo-Ping, Chen Jin-Jin, Zhang Xiao-Ai, Miao Dong, Ma Wei, Fang Li-Qun, Yang Yang, Liu Wei

机构信息

Department of Epidemiology, School of Public Health, Cheeloo College of Medicine, Shandong University, Jinan, China.

State Key Laboratory of Pathogen and Biosecurity, Beijing Institute of Microbiology and Epidemiology, Beijing, China.

出版信息

Transbound Emerg Dis. 2022 Sep;69(5):e2122-e2131. doi: 10.1111/tbed.14548. Epub 2022 Apr 12.

Abstract

The ongoing enzootic circulation of the Middle East respiratory syndrome coronavirus (MERS-CoV) in the Middle East and North Africa is increasingly raising the concern about the possibility of its recombination with other human-adapted coronaviruses, particularly the pandemic SARS-CoV-2. We aim to provide an updated picture about ecological niches of MERS-CoV and associated socio-environmental drivers. Based on 356 confirmed MERS cases with animal contact reported to the WHO and 63 records of animal infections collected from the literature as of 30 May 2020, we assessed ecological niches of MERS-CoV using an ensemble model integrating three machine learning algorithms. With a high predictive accuracy (area under receiver operating characteristic curve = 91.66% in test data), the ensemble model estimated that ecologically suitable areas span over the Middle East, South Asia and the whole North Africa, much wider than the range of reported locally infected MERS cases and test-positive animal samples. Ecological suitability for MERS-CoV was significantly associated with high levels of bareland coverage (relative contribution = 30.06%), population density (7.28%), average temperature (6.48%) and camel density (6.20%). Future surveillance and intervention programs should target the high-risk populations and regions informed by updated quantitative analyses.

摘要

中东呼吸综合征冠状病毒(MERS-CoV)在中东和北非持续的动物间传播,越来越引发人们对其与其他适应人类的冠状病毒,特别是大流行的严重急性呼吸综合征冠状病毒2(SARS-CoV-2)重组可能性的担忧。我们旨在提供有关MERS-CoV生态位及相关社会环境驱动因素的最新情况。基于截至2020年5月30日向世界卫生组织报告的356例有动物接触史的确诊MERS病例以及从文献中收集的63条动物感染记录,我们使用整合了三种机器学习算法的集成模型评估了MERS-CoV的生态位。该集成模型具有较高的预测准确性(测试数据中受试者工作特征曲线下面积 = 91.66%),估计生态适宜区域跨越中东、南亚和整个北非,比报告的本地感染MERS病例和检测呈阳性的动物样本范围要广得多。MERS-CoV的生态适宜性与高比例的裸地覆盖(相对贡献 = 30.06%)、人口密度(7.28%)、平均温度(6.48%)和骆驼密度(6.20%)显著相关。未来的监测和干预计划应以最新定量分析确定的高风险人群和地区为目标。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/859f/9790637/ad7df0ce21e7/TBED-69-e2122-g002.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验