Suppr超能文献

使用基于深度学习的动力系统模型从肌电图估算肌肉激活。

Estimating muscle activation from EMG using deep learning-based dynamical systems models.

机构信息

Wallace H. Coulter Department of Biomedical Engineering, Emory University and Georgia Institute of Technology, Atlanta, GA, United States of America.

Department of Electrical and Computer Engineering, Technical University of Munich, Munich, Germany.

出版信息

J Neural Eng. 2022 May 19;19(3). doi: 10.1088/1741-2552/ac6369.

Abstract

. To study the neural control of movement, it is often necessary to estimate how muscles are activated across a variety of behavioral conditions. One approach is to try extracting the underlying neural command signal to muscles by applying latent variable modeling methods to electromyographic (EMG) recordings. However, estimating the latent command signal that underlies muscle activation is challenging due to its complex relation with recorded EMG signals. Common approaches estimate each muscle's activation independently or require manual tuning of model hyperparameters to preserve behaviorally-relevant features.. Here, we adapted AutoLFADS, a large-scale, unsupervised deep learning approach originally designed to de-noise cortical spiking data, to estimate muscle activation from multi-muscle EMG signals. AutoLFADS uses recurrent neural networks to model the spatial and temporal regularities that underlie multi-muscle activation.. We first tested AutoLFADS on muscle activity from the rat hindlimb during locomotion and found that it dynamically adjusts its frequency response characteristics across different phases of behavior. The model produced single-trial estimates of muscle activation that improved prediction of joint kinematics as compared to low-pass or Bayesian filtering. We also applied AutoLFADS to monkey forearm muscle activity recorded during an isometric wrist force task. AutoLFADS uncovered previously uncharacterized high-frequency oscillations in the EMG that enhanced the correlation with measured force. The AutoLFADS-inferred estimates of muscle activation were also more closely correlated with simultaneously-recorded motor cortical activity than were other tested approaches.This method leverages dynamical systems modeling and artificial neural networks to provide estimates of muscle activation for multiple muscles. Ultimately, the approach can be used for further studies of multi-muscle coordination and its control by upstream brain areas, and for improving brain-machine interfaces that rely on myoelectric control signals.

摘要

. 为了研究运动的神经控制,通常需要根据各种行为条件来估计肌肉的激活方式。一种方法是通过应用潜在变量建模方法对肌电图 (EMG) 记录进行分析,从而尝试提取肌肉的潜在神经命令信号。然而,由于潜在命令信号与记录的 EMG 信号之间的复杂关系,估计潜在命令信号是具有挑战性的。常见的方法独立估计每个肌肉的激活,或者需要手动调整模型超参数以保留与行为相关的特征。. 在这里,我们改编了 AutoLFADS,这是一种大规模的、无监督的深度学习方法,最初设计用于去噪皮质尖峰数据,用于从多肌肉 EMG 信号估计肌肉激活。AutoLFADS 使用递归神经网络来模拟多肌肉激活的空间和时间规律。. 我们首先在大鼠后肢运动过程中的肌肉活动中测试了 AutoLFADS,发现它会根据行为的不同阶段动态调整其频率响应特性。与低通滤波或贝叶斯滤波相比,该模型产生的肌肉激活单试估计可提高关节运动学的预测。我们还将 AutoLFADS 应用于猴子前臂肌肉在等长腕力任务期间记录的活动。AutoLFADS 揭示了 EMG 中以前未表征的高频振荡,增强了与测量力的相关性。AutoLFADS 推断的肌肉激活估计与同时记录的运动皮质活动的相关性也高于其他测试方法。该方法利用动力系统建模和人工神经网络来提供多个肌肉的肌肉激活估计。最终,该方法可用于进一步研究多肌肉协调及其由上游脑区的控制,并用于改进依赖肌电控制信号的脑机接口。

相似文献

引用本文的文献

3
Cardiovascular responses to leg-press exercises during head-down tilt.头低位倾斜期间腿部推举运动的心血管反应。
Front Sports Act Living. 2024 Aug 27;6:1396391. doi: 10.3389/fspor.2024.1396391. eCollection 2024.

本文引用的文献

9
Millisecond Spike Timing Codes for Motor Control.毫秒级尖峰时序编码用于运动控制。
Trends Neurosci. 2018 Oct;41(10):644-648. doi: 10.1016/j.tins.2018.08.010. Epub 2018 Sep 25.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验