Akossi Aurelie, Wang Fusheng, Teodoro George, Kong Jun
Department of Mathematics and Statistics, Georgia State University, Atlanta, GA, 30303, USA.
Department of Computer Science, Stony Brook University, Stony Brook, NY, 11794, USA.
Proc IEEE Int Symp Biomed Imaging. 2021 Apr;2021:702-705. doi: 10.1109/isbi48211.2021.9434161. Epub 2021 May 25.
In this paper, we propose a method that optimizes a regularization parameter for the regularized Free Form Deformation (FFD) non-rigid image registration. The developed process utilizes autoencoder generated image representations to assess image data generalization quality by the regularization parameter. Both pixel intensity and learned features are used to improve the overall accuracy and regularity of the resulting inverse problem solution. We implement the new selection criterion with its use in the non-rigid image FFD registration based on multi-level Bspline with L2-regularization, and validate the method with synthetic and real histopathology image datasets. Both qualitative and quantitative results suggest the efficacy of our developed method for fine-tuning histopathology microscope images.
在本文中,我们提出了一种为正则化自由形式变形(FFD)非刚性图像配准优化正则化参数的方法。所开发的过程利用自动编码器生成的图像表示,通过正则化参数来评估图像数据的泛化质量。像素强度和学习到的特征都被用于提高所得反问题解决方案的整体准确性和正则性。我们基于具有L2正则化的多级B样条,将新的选择标准应用于非刚性图像FFD配准中,并使用合成和真实的组织病理学图像数据集对该方法进行验证。定性和定量结果均表明我们所开发的方法在微调组织病理学显微镜图像方面的有效性。