Suppr超能文献

基于学习自动编码器特征的最优正则化参数选择的图像配准

IMAGE REGISTRATION WITH OPTIMAL REGULARIZATION PARAMETER SELECTION BY LEARNED AUTO ENCODER FEATURES.

作者信息

Akossi Aurelie, Wang Fusheng, Teodoro George, Kong Jun

机构信息

Department of Mathematics and Statistics, Georgia State University, Atlanta, GA, 30303, USA.

Department of Computer Science, Stony Brook University, Stony Brook, NY, 11794, USA.

出版信息

Proc IEEE Int Symp Biomed Imaging. 2021 Apr;2021:702-705. doi: 10.1109/isbi48211.2021.9434161. Epub 2021 May 25.

Abstract

In this paper, we propose a method that optimizes a regularization parameter for the regularized Free Form Deformation (FFD) non-rigid image registration. The developed process utilizes autoencoder generated image representations to assess image data generalization quality by the regularization parameter. Both pixel intensity and learned features are used to improve the overall accuracy and regularity of the resulting inverse problem solution. We implement the new selection criterion with its use in the non-rigid image FFD registration based on multi-level Bspline with L2-regularization, and validate the method with synthetic and real histopathology image datasets. Both qualitative and quantitative results suggest the efficacy of our developed method for fine-tuning histopathology microscope images.

摘要

在本文中,我们提出了一种为正则化自由形式变形(FFD)非刚性图像配准优化正则化参数的方法。所开发的过程利用自动编码器生成的图像表示,通过正则化参数来评估图像数据的泛化质量。像素强度和学习到的特征都被用于提高所得反问题解决方案的整体准确性和正则性。我们基于具有L2正则化的多级B样条,将新的选择标准应用于非刚性图像FFD配准中,并使用合成和真实的组织病理学图像数据集对该方法进行验证。定性和定量结果均表明我们所开发的方法在微调组织病理学显微镜图像方面的有效性。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/cb3c/8975123/316046905380/nihms-1702848-f0002.jpg

相似文献

5
Geodesic active fields--a geometric framework for image registration.测地活动场--图像配准的一种几何框架。
IEEE Trans Image Process. 2011 May;20(5):1300-12. doi: 10.1109/TIP.2010.2093904. Epub 2010 Nov 18.
6
Registration using sparse free-form deformations.使用稀疏自由形式变形进行配准。
Med Image Comput Comput Assist Interv. 2012;15(Pt 2):659-66. doi: 10.1007/978-3-642-33418-4_81.

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验