Suppr超能文献

利用氟脱氧葡萄糖正电子发射断层扫描-计算机断层扫描的自动三维高分辨率表征学习鉴别肺恶性结节与良性结节

Differentiation Between Malignant and Benign Pulmonary Nodules by Using Automated Three-Dimensional High-Resolution Representation Learning With Fluorodeoxyglucose Positron Emission Tomography-Computed Tomography.

作者信息

Lai Yung-Chi, Wu Kuo-Chen, Tseng Neng-Chuan, Chen Yi-Jin, Chang Chao-Jen, Yen Kuo-Yang, Kao Chia-Hung

机构信息

Department of Nuclear Medicine, PET Center, China Medical University Hospital, Taichung, Taiwan.

Graduate Institute of Biomedical Electronics and Bioinformatics, National Taiwan University, Taipei, Taiwan.

出版信息

Front Med (Lausanne). 2022 Mar 18;9:773041. doi: 10.3389/fmed.2022.773041. eCollection 2022.

Abstract

BACKGROUND

The investigation of incidental pulmonary nodules has rapidly become one of the main indications for 18F-fluorodeoxyglucose (FDG) positron emission tomography (PET), currently combined with computed tomography (PET-CT). There is also a growing trend to use artificial Intelligence for optimization and interpretation of PET-CT Images. Therefore, we proposed a novel deep learning model that aided in the automatic differentiation between malignant and benign pulmonary nodules on FDG PET-CT.

METHODS

In total, 112 participants with pulmonary nodules who underwent FDG PET-CT before surgery were enrolled retrospectively. We designed a novel deep learning three-dimensional (3D) high-resolution representation learning (HRRL) model for the automated classification of pulmonary nodules based on FDG PET-CT images without manual annotation by experts. For the images to be localized more precisely, we defined the territories of the lungs through a novel artificial intelligence-driven image-processing algorithm, instead of the conventional segmentation method, without the aid of an expert; this algorithm is based on deep HRRL, which is used to perform high-resolution classification. In addition, the 2D model was converted to a 3D model.

RESULTS

All pulmonary lesions were confirmed through pathological studies (79 malignant and 33 benign). We evaluated its diagnostic performance in the differentiation of malignant and benign nodules. The area under the receiver operating characteristic curve (AUC) of the deep learning model was used to indicate classification performance in an evaluation using fivefold cross-validation. The nodule-based prediction performance of the model had an AUC, sensitivity, specificity, and accuracy of 78.1, 89.9, 54.5, and 79.4%, respectively.

CONCLUSION

Our results suggest that a deep learning algorithm using HRRL without manual annotation from experts might aid in the classification of pulmonary nodules discovered through clinical FDG PET-CT images.

摘要

背景

偶然发现的肺结节的检查已迅速成为18F-氟脱氧葡萄糖(FDG)正电子发射断层扫描(PET)的主要适应症之一,目前PET与计算机断层扫描(PET-CT)联合使用。使用人工智能优化和解读PET-CT图像的趋势也在不断增加。因此,我们提出了一种新型深度学习模型,该模型有助于在FDG PET-CT上自动区分恶性和良性肺结节。

方法

回顾性纳入了112名术前接受FDG PET-CT检查的肺结节患者。我们设计了一种新型深度学习三维(3D)高分辨率表征学习(HRRL)模型,用于基于FDG PET-CT图像自动分类肺结节,无需专家手动标注。为了更精确地定位图像,我们通过一种新型人工智能驱动的图像处理算法定义肺的区域,而不是传统的分割方法,无需专家协助;该算法基于深度HRRL,用于进行高分辨率分类。此外,将二维模型转换为三维模型。

结果

所有肺部病变均通过病理研究得到证实(79例恶性,33例良性)。我们评估了其在区分恶性和良性结节方面的诊断性能。在使用五重交叉验证的评估中,深度学习模型的受试者操作特征曲线(AUC)下面积用于指示分类性能。该模型基于结节的预测性能的AUC、敏感性、特异性和准确性分别为78.1%、89.9%、54.5%和79.4%。

结论

我们的结果表明,一种使用HRRL且无需专家手动标注的深度学习算法可能有助于对通过临床FDG PET-CT图像发现的肺结节进行分类。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/1b51/8971840/cdfcb29eae2f/fmed-09-773041-g001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验