Suppr超能文献

基于PET/CT影像组学的人工智能在非小细胞肺癌中的作用:疾病管理、机遇与挑战。

The role of artificial intelligence based on PET/CT radiomics in NSCLC: Disease management, opportunities, and challenges.

作者信息

Hu Qiuyuan, Li Ke, Yang Conghui, Wang Yue, Huang Rong, Gu Mingqiu, Xiao Yuqiang, Huang Yunchao, Chen Long

机构信息

Department of positron emission tomography/computed tomography (PET/CT) Center, Yunnan Cancer Hospital, The Third Affiliated Hospital of Kunming Medical University, Cancer Center of Yunnan Province, Kunming, Yunnan, China.

Department of Cancer Biotherapy Center, Yunnan Cancer Hospital, The Third Affiliated Hospital of Kunming Medical University, Cancer Center of Yunnan Province, Kunming, Yunnan, China.

出版信息

Front Oncol. 2023 Mar 7;13:1133164. doi: 10.3389/fonc.2023.1133164. eCollection 2023.

Abstract

OBJECTIVES

Lung cancer has been widely characterized through radiomics and artificial intelligence (AI). This review aims to summarize the published studies of AI based on positron emission tomography/computed tomography (PET/CT) radiomics in non-small-cell lung cancer (NSCLC).

MATERIALS AND METHODS

A comprehensive search of literature published between 2012 and 2022 was conducted on the PubMed database. There were no language or publication status restrictions on the search. About 127 articles in the search results were screened and gradually excluded according to the exclusion criteria. Finally, this review included 39 articles for analysis.

RESULTS

Classification is conducted according to purposes and several studies were identified at each stage of disease:1) Cancer detection (n=8), 2) histology and stage of cancer (n=11), 3) metastases (n=6), 4) genotype (n=6), 5) treatment outcome and survival (n=8). There is a wide range of heterogeneity among studies due to differences in patient sources, evaluation criteria and workflow of radiomics. On the whole, most models show diagnostic performance comparable to or even better than experts, and the common problems are repeatability and clinical transformability.

CONCLUSION

AI-based PET/CT Radiomics play potential roles in NSCLC clinical management. However, there is still a long way to go before being translated into clinical application. Large-scale, multi-center, prospective research is the direction of future efforts, while we need to face the risk of repeatability of radiomics features and the limitation of access to large databases.

摘要

目的

肺癌已通过放射组学和人工智能(AI)得到广泛表征。本综述旨在总结基于正电子发射断层扫描/计算机断层扫描(PET/CT)放射组学的非小细胞肺癌(NSCLC)人工智能已发表研究。

材料与方法

在PubMed数据库中对2012年至2022年发表的文献进行全面检索。检索无语言或发表状态限制。对检索结果中的约127篇文章进行筛选,并根据排除标准逐步排除。最终,本综述纳入39篇文章进行分析。

结果

根据目的进行分类,并在疾病的每个阶段确定了多项研究:1)癌症检测(n = 8),2)癌症组织学和分期(n = 11),3)转移(n = 6),4)基因型(n = 6),5)治疗结果和生存(n = 8)。由于患者来源、评估标准和放射组学工作流程的差异,各研究之间存在广泛的异质性。总体而言,大多数模型显示出与专家相当甚至更好的诊断性能,常见问题是可重复性和临床可转化性。

结论

基于人工智能的PET/CT放射组学在NSCLC临床管理中发挥着潜在作用。然而,在转化为临床应用之前仍有很长的路要走。大规模、多中心、前瞻性研究是未来努力的方向,同时我们需要面对放射组学特征的可重复性风险和获取大型数据库的局限性。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/a82d/10028142/8f558da396bb/fonc-13-1133164-g001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验