Hunan Provincial Key Laboratory of Intelligent Computing and Language Information Processing, Hunan Normal University, Changsha, China.
College of Information Science and Engineering, Hunan Normal University, Changsha, China.
IET Syst Biol. 2022 May;16(3-4):85-97. doi: 10.1049/syb2.12042. Epub 2022 Apr 4.
Prenatal karyotype diagnosis is important to determine if the foetus has genetic diseases and some congenital diseases. Chromosome classification is an important part of karyotype analysis, and the task is tedious and lengthy. Chromosome classification methods based on deep learning have achieved good results, but if the quality of the chromosome image is not high, these methods cannot learn image features well, resulting in unsatisfactory classification results. Moreover, the existing methods generally have a poor effect on sex chromosome classification. Therefore, in this work, the authors propose to use a super-resolution network, Self-Attention Negative Feedback Network, and combine it with traditional neural networks to obtain an efficient chromosome classification method called SRAS-net. The method first inputs the low-resolution chromosome images into the super-resolution network to generate high-resolution chromosome images and then uses the traditional deep learning model to classify the chromosomes. To solve the problem of inaccurate sex chromosome classification, the authors also propose to use the SMOTE algorithm to generate a small number of sex chromosome samples to ensure a balanced number of samples while allowing the model to learn more sex chromosome features. Experimental results show that our method achieves 97.55% accuracy and is better than state-of-the-art methods.
产前核型诊断对于确定胎儿是否患有遗传疾病和一些先天性疾病非常重要。染色体分类是核型分析的重要组成部分,这项任务既繁琐又冗长。基于深度学习的染色体分类方法已经取得了很好的效果,但如果染色体图像的质量不高,这些方法就无法很好地学习图像特征,导致分类结果不尽如人意。此外,现有的方法通常对性染色体分类的效果不佳。因此,在这项工作中,作者提出使用超分辨率网络、自注意力负反馈网络,并将其与传统神经网络相结合,得到一种名为 SRAS-net 的高效染色体分类方法。该方法首先将低分辨率的染色体图像输入到超分辨率网络中,生成高分辨率的染色体图像,然后使用传统的深度学习模型对染色体进行分类。为了解决性染色体分类不准确的问题,作者还提出使用 SMOTE 算法生成少量的性染色体样本,以在确保样本数量平衡的同时,让模型学习到更多的性染色体特征。实验结果表明,我们的方法达到了 97.55%的准确率,优于现有方法。