Nicolet Anna, Assouline Dan, Le Pogam Marie-Annick, Perraudin Clémence, Bagnoud Christophe, Wagner Joël, Marti Joachim, Peytremann-Bridevaux Isabelle
Center for Primary Care and Public Health (Unisanté), University of Lausanne, Lausanne, Switzerland.
Groupe Mutuel, Martigny, Switzerland.
JMIR Med Inform. 2022 Apr 4;10(4):e34274. doi: 10.2196/34274.
Although the trend of progressing morbidity is widely recognized, there are numerous challenges when studying multimorbidity and patient complexity. For multimorbid or complex patients, prone to fragmented care and high health care use, novel estimation approaches need to be developed.
This study aims to investigate the patient multimorbidity and complexity of Swiss residents aged ≥50 years using clustering methodology in claims data.
We adopted a clustering methodology based on random forests and used 34 pharmacy-based cost groups as the only input feature for the procedure. To detect clusters, we applied hierarchical density-based spatial clustering of applications with noise. The reasonable hyperparameters were chosen based on various metrics embedded in the algorithms (out-of-bag misclassification error, normalized stress, and cluster persistence) and the clinical relevance of the obtained clusters.
Based on cluster analysis output for 18,732 individuals, we identified an outlier group and 7 clusters: individuals without diseases, patients with only hypertension-related diseases, patients with only mental diseases, complex high-cost high-need patients, slightly complex patients with inexpensive low-severity pharmacy-based cost groups, patients with 1 costly disease, and older high-risk patients.
Our study demonstrated that cluster analysis based on pharmacy-based cost group information from claims-based data is feasible and highlights clinically relevant clusters. Such an approach allows expanding the understanding of multimorbidity beyond simple disease counts and can identify the population profiles with increased health care use and costs. This study may foster the development of integrated and coordinated care, which is high on the agenda in policy making, care planning, and delivery.
尽管发病率上升的趋势已得到广泛认可,但在研究多重疾病和患者复杂性时仍存在诸多挑战。对于患有多种疾病或病情复杂的患者,他们容易接受碎片化护理且医疗保健利用率高,因此需要开发新的评估方法。
本研究旨在利用索赔数据中的聚类方法,调查瑞士年龄≥50岁居民的患者多重疾病情况和复杂性。
我们采用了基于随机森林的聚类方法,并将34个基于药房的成本组作为该程序的唯一输入特征。为了检测聚类,我们应用了带噪声的基于密度的空间聚类层次算法。基于算法中嵌入的各种指标(袋外错误分类误差、归一化应力和聚类持久性)以及所获得聚类的临床相关性,选择了合理的超参数。
基于对18732名个体的聚类分析输出,我们识别出一个离群组和7个聚类:无疾病个体、仅患有高血压相关疾病的患者、仅患有精神疾病的患者、复杂的高成本高需求患者、基于药房成本组的低成本低严重程度的轻度复杂患者、患有1种高成本疾病的患者以及老年高危患者。
我们的研究表明,基于索赔数据中基于药房成本组信息的聚类分析是可行的,并突出了具有临床相关性的聚类。这种方法能够扩展对多重疾病的理解,超越简单的疾病计数,并能识别出医疗保健使用和成本增加的人群特征。本研究可能会促进综合协调护理的发展,这在政策制定、护理规划和提供方面都处于议程的重要位置。