Suppr超能文献

老年人多病共存模式:一项采用聚类分析的前瞻性队列研究。

Multimorbidity patterns in the elderly: a prospective cohort study with cluster analysis.

机构信息

Institut Universitari d'Investigació en Atenció Primària Jordi Gol (IDIAP Jordi Gol), Gran Via Corts Catalanes, 587 àtic, 08007, Barcelona, Spain.

Universitat Autònoma de Barcelona, Campus de la UAB, Plaça Cívica, 08193, Bellaterra (Cerdanyola del Vallès), Barcelona, Spain.

出版信息

BMC Geriatr. 2018 Jan 16;18(1):16. doi: 10.1186/s12877-018-0705-7.

Abstract

BACKGROUND

Multimorbidity is the coexistence of more than two chronic diseases in the same individual; however, there is no consensus about the best definition. In addition, few studies have described the variability of multimorbidity patterns over time. The aim of this study was to identify multimorbidity patterns and their variability over a 6-year period in patients older than 65 years attended in primary health care.

METHODS

A cohort study with yearly cross-sectional analysis of electronic health records from 50 primary health care centres in Barcelona. Selected patients had multimorbidity and were 65 years of age or older in 2009. Diagnoses (International Classification of Primary Care, second edition) were extracted using O'Halloran criteria for chronic diseases. Multimorbidity patterns were identified using two steps: 1) multiple correspondence analysis and 2) k-means clustering. Analysis was stratified by sex and age group (65-79 and ≥80 years) at the beginning of the study period.

RESULTS

Analysis of 2009 electronic health records from 190,108 patients with multimorbidity (59.8% women) found a mean age of 71.8 for the 65-79 age group and 84.16 years for those over 80 (Standard Deviation [SD] 4.35 and 3.46, respectively); the median number of chronic diseases was seven (Interquartil range [IQR] 5-10). We obtained 6 clusters of multimorbidity patterns (1 nonspecific and 5 specifics) in each group, being the specific ones: Musculoskeletal, Endocrine-metabolic, Digestive/Digestive-respiratory, Neurological, and Cardiovascular patterns. A minimum of 42.5% of the sample remained in the same pattern at the end of the study, reflecting the stability of these patterns.

CONCLUSIONS

This study identified six multimorbidity patterns per each group, one nonnspecific pattern and five of them with a specific pattern related to an organic system. The multimorbidity patterns obtained had similar characteristics throughout the study period. These data are useful to improve clinical management of each specific subgroup of patients showing a particular multimorbidity pattern.

摘要

背景

多种疾病共存是指同一患者同时患有两种或两种以上的慢性疾病,但目前对于最佳定义尚无共识。此外,很少有研究描述过多种疾病模式随时间的变化。本研究旨在确定 65 岁以上在初级保健就诊的患者在 6 年内的多种疾病模式及其变化。

方法

这是一项队列研究,每年对巴塞罗那 50 个初级保健中心的电子健康记录进行横断面分析。所选患者患有多种疾病,并且在 2009 年年龄在 65 岁或以上。使用 O'Halloran 标准为慢性疾病提取诊断(国际初级保健分类,第二版)。使用两步法识别多种疾病模式:1)多元对应分析和 2)k-均值聚类。在研究开始时,按性别和年龄组(65-79 岁和≥80 岁)进行分层分析。

结果

对 190108 例患有多种疾病(59.8%为女性)的 2009 年电子健康记录进行分析,发现 65-79 岁年龄组的平均年龄为 71.8 岁,80 岁以上的平均年龄为 84.16 岁(标准差分别为 4.35 和 3.46);慢性病中位数为 7 种(四分位距为 5-10)。在每个组中,我们都获得了 6 种多种疾病模式聚类(1 种非特异性和 5 种特异性),特异性模式包括:肌肉骨骼、内分泌代谢、消化/消化-呼吸、神经和心血管模式。在研究结束时,至少有 42.5%的样本保持在相同的模式,反映了这些模式的稳定性。

结论

本研究在每个组中确定了 6 种多种疾病模式,一种非特异性模式和 5 种与特定器官系统相关的特异性模式。整个研究期间获得的多种疾病模式具有相似的特征。这些数据有助于改善具有特定多种疾病模式的每个特定亚组患者的临床管理。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验