Nagelj Nejc, Brumberg Alexandra, Peifer Shoshanna, Schaller Richard D, Olshansky Jacob H
Department of Chemistry, Amherst College, Amherst, Massachusetts 01002, United States.
Department of Chemistry, Northwestern University, Evanston, Illinois 60208, United States.
J Phys Chem Lett. 2022 Apr 14;13(14):3209-3216. doi: 10.1021/acs.jpclett.2c00333. Epub 2022 Apr 4.
It is critical to find methods to control the thermodynamic driving force for photoexcited charge transfer from quantum dots (QDs) and explore how this affects charge transfer rates, since the efficiency of QD-based photovoltaic and photocatalysis technologies depends on both this rate and the associated energetic losses. In this work, we introduce a single-pot shell growth and Cu-catalyzed cation exchange method to synthesize CdZnSe/CdZnS QDs with tunable driving forces for electron transfer. Functionalizing them with two molecular electron acceptors─naphthalenediimide (NDI) and anthraquinone (AQ)─allowed us to probe nearly 1 eV of driving forces. For AQ, at lower driving forces, we find that higher Zn content results in a 130-fold increase of electron transfer rate constants. However, at higher driving forces electron transfer dynamics are unaltered. The data are understood using an Auger-assisted electron transfer model and analyzed with computational work to determine approximate binding geometries of these electron acceptors. Our work provides a method to tune QD reducing power and produces useful metrics for optimizing QD charge transfer systems that maximize rates of electron transfer while minimizing energetic losses.
找到控制量子点(QD)光激发电荷转移的热力学驱动力的方法,并探究其如何影响电荷转移速率至关重要,因为基于量子点的光伏和光催化技术的效率取决于该速率以及相关的能量损失。在这项工作中,我们引入了一种单锅壳生长和铜催化阳离子交换方法,以合成具有可调电子转移驱动力的CdZnSe/CdZnS量子点。用两种分子电子受体——萘二亚胺(NDI)和蒽醌(AQ)对其进行功能化,使我们能够探测近1 eV的驱动力。对于AQ,在较低的驱动力下,我们发现较高的锌含量会导致电子转移速率常数增加130倍。然而,在较高的驱动力下,电子转移动力学不变。使用俄歇辅助电子转移模型理解这些数据,并通过计算工作进行分析,以确定这些电子受体的近似结合几何结构。我们的工作提供了一种调节量子点还原能力的方法,并为优化量子点电荷转移系统产生了有用的指标,该系统能在最大限度提高电子转移速率的同时最小化能量损失。