Tallman Aaron E, Pokharel Reeju, Bamney Darshan, Spearot Douglas E, Clausen Bjorn, Lebensohn Ricardo A, Brown Donald, Capolungo Laurent
Materials Science and Technology Division, Los Alamos National Laboratory, Los Alamos, NM, USA.
Department of Materials Science and Engineering, University of Florida, Gainesville, FL, USA.
Sci Rep. 2022 Apr 4;12(1):5628. doi: 10.1038/s41598-022-08816-7.
Non-destructive evaluation of plastically deformed metals, particularly diffraction line profile analysis (DLPA), is valuable both to estimate dislocation densities and arrangements and to validate microstructure-aware constitutive models. To date, the interpretation of whole line diffraction profiles relies on the use of semi-analytical models such as the extended convolutional multiple whole profile (eCMWP) method. This study introduces and validates two data-driven DLPA models to extract dislocation densities from experimentally gathered whole line diffraction profiles. Using two distinct virtual diffraction models accounting for both strain and instrument induced broadening, a database of virtual diffraction whole line profiles of Ta single crystals is generated using discrete dislocation dynamics. The databases are mined to create Gaussian process regression-based surrogate models, allowing dislocation densities to be extracted from experimental profiles. The method is validated against 11 experimentally gathered whole line diffraction profiles from plastically deformed Ta polycrystals. The newly proposed model predicts dislocation densities consistent with estimates from eCMWP. Advantageously, this data driven LPA model can distinguish broadening originating from the instrument and from the dislocation content even at low dislocation densities. Finally, the data-driven model is used to explore the effect of heterogeneous dislocation densities in microstructures containing grains, which may lead to more accurate data-driven predictions of dislocation density in plastically deformed polycrystals.
对塑性变形金属进行无损评估,特别是衍射线轮廓分析(DLPA),对于估计位错密度和排列以及验证微观结构感知本构模型都具有重要价值。迄今为止,对整条线衍射轮廓的解释依赖于使用半解析模型,如扩展卷积多整条轮廓(eCMWP)方法。本研究引入并验证了两个数据驱动的DLPA模型,以从实验收集的整条线衍射轮廓中提取位错密度。使用两个分别考虑应变和仪器引起的展宽的不同虚拟衍射模型,利用离散位错动力学生成了钽单晶虚拟衍射整条线轮廓的数据库。对这些数据库进行挖掘,以创建基于高斯过程回归的替代模型,从而能够从实验轮廓中提取位错密度。该方法针对11个从塑性变形钽多晶体实验收集的整条线衍射轮廓进行了验证。新提出的模型预测的位错密度与eCMWP的估计结果一致。有利的是,这种数据驱动的LPA模型即使在低位错密度下也能区分仪器引起的展宽和位错含量引起的展宽。最后,数据驱动模型用于探索包含晶粒的微观结构中异质位错密度的影响,这可能导致对塑性变形多晶体中位错密度进行更准确的数据驱动预测。