Suppr超能文献

使用基于人工智能的方法应对临床试验中的安慰剂反应。

Using Artificial Intelligence-based Methods to Address the Placebo Response in Clinical Trials.

作者信息

Smith Erica A, Horan William P, Demolle Dominique, Schueler Peter, Fu Dong-Jing, Anderson Ariana E, Geraci Joseph, Butlen-Ducuing Florence, Link Jasmine, Khin Ni A, Morlock Robert, Alphs Larry D

机构信息

Drs. Smith and Demolle are with Cognivia in Mont St. Guibert, Belgium.

Dr. Horan is with VeraSci in Durham, North Carolina.

出版信息

Innov Clin Neurosci. 2022 Jan-Mar;19(1-3):60-70.

Abstract

The placebo response is a highly complex psychosocial-biological phenomenon that has challenged drug development for decades, particularly in neurological and psychiatric disease. While decades of research have aimed to understand clinical trial factors that contribute to the placebo response, a comprehensive solution to manage the placebo response in drug development has yet to emerge. Advanced data analytic techniques, such as artificial intelligence (AI), might be needed to take the next leap forward in mitigating the negative consequences of high placebo-response rates. The objective of this review was to explore the use of techniques such as AI and the sub-discipline of machine learning (ML) to address placebo response in practical ways that can positively impact drug development. This examination focused on the critical factors that should be considered in applying AI and ML to the placebo response issue, examples of how these techniques can be used, and the regulatory considerations for integrating these approaches into clinical trials.

摘要

安慰剂反应是一种高度复杂的心理社会生物学现象,几十年来一直困扰着药物研发,尤其是在神经和精神疾病领域。尽管数十年来的研究旨在了解导致安慰剂反应的临床试验因素,但在药物研发中管理安慰剂反应的全面解决方案尚未出现。可能需要先进的数据分析技术,如人工智能(AI),才能在减轻高安慰剂反应率的负面影响方面取得进一步突破。本综述的目的是探讨如何使用AI和机器学习(ML)等技术,以切实可行的方式解决安慰剂反应问题,从而对药物研发产生积极影响。本次研究聚焦于将AI和ML应用于安慰剂反应问题时应考虑的关键因素、这些技术的应用实例,以及将这些方法纳入临床试验的监管考量。

相似文献

2
The future of Cochrane Neonatal.
Early Hum Dev. 2020 Nov;150:105191. doi: 10.1016/j.earlhumdev.2020.105191. Epub 2020 Sep 12.
4
Combating COVID-19 Crisis using Artificial Intelligence (AI) Based Approach: Systematic Review.
Curr Top Med Chem. 2024;24(8):737-753. doi: 10.2174/0115680266282179240124072121.
7
Taking the leap between analytical chemistry and artificial intelligence: A tutorial review.
Anal Chim Acta. 2021 May 29;1161:338403. doi: 10.1016/j.aca.2021.338403. Epub 2021 Mar 15.
9
Overview and Clinical Applications of Artificial Intelligence and Machine Learning in Cardiac Anesthesiology.
J Cardiothorac Vasc Anesth. 2024 May;38(5):1211-1220. doi: 10.1053/j.jvca.2024.02.004. Epub 2024 Feb 15.
10
Revolutionizing Breast Healthcare: Harnessing the Role of Artificial Intelligence.
Cureus. 2023 Dec 8;15(12):e50203. doi: 10.7759/cureus.50203. eCollection 2023 Dec.

本文引用的文献

1
Digital health technologies in clinical trials for central nervous system drugs: an EU regulatory perspective.
Nat Rev Drug Discov. 2021 Feb;20(2):83-84. doi: 10.1038/d41573-020-00168-z.
2
European Headache Federation recommendations for placebo and nocebo terminology.
J Headache Pain. 2020 Sep 25;21(1):117. doi: 10.1186/s10194-020-01178-3.
5
Run-in periods and clinical outcomes of antipsychotics in dementia: A meta-epidemiological study of placebo-controlled trials.
Pharmacoepidemiol Drug Saf. 2020 Feb;29(2):125-133. doi: 10.1002/pds.4903. Epub 2019 Nov 15.
8
Optimizing patient expectancy in the pharmacologic treatment of major depressive disorder.
Psychol Med. 2019 Oct;49(14):2414-2420. doi: 10.1017/S0033291718003343. Epub 2018 Nov 13.
9
The Placebo Phenomenon: A Narrow Focus on Psychological Models.
Perspect Biol Med. 2018;61(3):388-400. doi: 10.1353/pbm.2018.0051.
10
Brain and psychological determinants of placebo pill response in chronic pain patients.
Nat Commun. 2018 Sep 12;9(1):3397. doi: 10.1038/s41467-018-05859-1.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验